It’s not About the GUI: A Command-Line-Based Introduction to the UNIX Environment
Phil Pfeiffer

East Tennessee State University

last updated March 2007
It’s not About the GUI: A Command-Line-Based Introduction to the UNIX Environment, Version 1.0.3
© 2006, 2007, Phil Pfeiffer

Permission is hereby granted for instructors to use this manual in classroom instruction, and to distribute it, at cost, to their students. All other rights reserved.
Disclaimer:

Go where you’re going to

And do what you want to do

Think for yourself, ‘cause I won’t be there with you.
-- George Harrison, Think for Yourself
Neither the author of this document, nor East Tennessee State University, makes any representations about the suitability of this document for any purpose. This content is provided "as is" without express or implied warranty.

Table of Contents

121.
Introduction

121.1
What is UNIX?

121.2
Why Study UNIX?

121.3
What’s in this Document?

131.4
What’s Missing from this Document?

142.
UNIX and UNIX-Like Systems: An Overview

142.1
A Short History of the UNIX Operating System (and its Look-Alikes)

152.2
Key UNIX Features—A First Look

15User accounts

15User groups

15Logging in and logging out

16Accountability

16A hierarchical file system

172.3
UNIX vs. MS/DOS: Similarities and Differences

17Key similarities between UNIX and MS/DOS

17File systems

17Command interpreters

17Key differences between UNIX and MS/DOS

17Operating environments

17File systems

18Command interpreters

18Command names

182.4
UNIX Classic vs. UNIX New

192.5
UNIX at ETSU

203.
Logging In and Entering Commands

203.1
Accessing a Command Prompt

203.2
Entering Commands

203.3
Sixteen Basic UNIX Commands

20The sixteen commands

21login – Begin a UNIX session

21passwd – Change password (on local system)

21yppasswd – Change password (throughout local network)

21man – Read manual pages

21pwd – Identify working directory

21cd – Change working directory

22echo – Display a string

22ls – Show (list) information about a file system object

23cat – Display a file

23more – Display a file, interactively

23cp – Copy files

23rm – Remove a file

23Basics of rm operation

24The standard rm file deletion algorithm: security implications

25mv – Move (rename) files

25mkdir – Create a new directory

25rmdir – Remove a subdirectory

25logout – End a session

264.
The nano Text Editor

264.1
Background

264.2
Starting nano

264.3
Using nano to Enter Text

274.4
Managing Long Lines

274.5
Other nano Commands

274.6
nano.save

284.7
nano and Remote Logins

28What to do when nano won’t start

28How to manage window size problems

295.
UNIX File and Directory Management

295.1
Retrieving UNIX File and Directory Attributes

295.2
Managing User-Settable UNIX File and Directory Attributes

29User-settable attributes: names, permissions, owners, and groups

30Managing access permissions on UNIX files and directories

30UNIX file permissions: a detailed overview

30Managing permissions

315.3
Link-Based Object Sharing

31Background: Linking and the UNIX File System

31Hard link manipulation

31Hard link creation using ln without options

32Creating a hard link: an example

33Undoing hard links: rm vs. unlink

33Soft link creation using ln –s

34Creating a soft link: an example

34Undoing soft links

345.4
Managing Files and Directories with Problem Names

366.
Managing UNIX Command Execution

366.1
Recalling and Reusing Past Commands

366.2
Environment Variables

376.3
Resolving Command Names

386.4
Command Line I/O: Streams, Redirection, and Pipes

38streams, stdin, stdout, stderr, and redirectio

39Pipes

406.5
Managing Job Execution

40About jobs

40Basic UNIX job control commands

40Suspending and resuming the current job (^Z, fg)

40Killing the last suspended job

40Restarting suspended jobs in the background (bg)

41More UNIX job control commands

41Starting jobs in the background (&)

41Listing active jobs (jobs)

41Resuming suspended jobs (fg) – a more detailed discussion

41Terminating executing jobs (kill)

426.6
Accessing Task Status

437.
Filters: An Overview

437.1
Introduction

43Filters as Tools for Massaging Output

43Ten Key UNIX Filters

44Sample Data Files for Demonstrating Filters

457.2
head

467.3
tail

467.4
cut

487.5
paste

487.6
wc

497.7
tr

507.8
grep

50grep and regular expressions

52Pattern writing with grep

52Operators that match a context in which a pattern appears

53Operators that match individual characters

54Operators that match any one character from a set of characters

56Operators that demarcate a pattern

56Operators that match any one string from a set of strings

57Pattern repetition operators

59Pattern recurrence operators

59Creating readable patterns

60afterword: grep new vs. grep classic

617.9
awk

61awk, in theory: inputs, programs, outputs

61awk’s inputs

62awk’s output

62awk’s operation

63awk, in practice: examples of awk programs

63awk one-liners

63awk as a better cut

64awk as an alternative to grep

64awk as a pseudo-pr

64awk as a file-based filter

657.10
sort

687.11
uniq

698.
bash Shell Scripting

698.1
Running bash Scripts—a First Look

69Running bash scripts from the command line

69Running bash scripts from files

708.2
An Introduction to the bash Scripting Language

70Comments

70Values

70Values are strings

70Creating strings using quoting: the three styles of bash quoting

71Treating strings as numbers

71Variables

71Defining bash variables.

72Treating variables as numbers.

73Nuances of bash variables

73Managing complex arithmetic expressions.

73Displaying a variable’s value.

73Removing variables.

73Managing references of undefined variables.

73Arrays

74Statement grouping constructs

74Semicolons

74Subshells

75Selection statements

75if statements

76case statements

77Loops

77List-driven loops: the bash for … in loop

78Counter-driven loops: the bash for ((…)) loop

78Condition-driven loops: the bash “until” and “while” loops

78Nesting loops

79File input using loops, read, and $?

80Interrupting loop execution: break and continue statements

81Command evaluation: the eval statement

81Simple command evaluation

81Evaluate and capture

81Built-in bash variables

81Accessing a script’s command-line arguments

83Obtaining the previous command’s status

84Returning a final status from a bash script

84bash operating modes

84Script debugging

85Support for conservative error handling

858.3
Good Programming Style in bash—Selected recommendations

86Best practices for parameter testing

86Where appropriate, count parameters

86Where appropriate, check parameter formats and types

87Best practices for manipulating temporary files

899.
Find

899.1
Background: Reasons for Manipulating Directories en masse

899.2
Using find to specify and process directory entries

89Using find to specify entries

90Using find to process entries

90Three strategies for processing entries

90find/–exec

90chaining –exec options

91using –exec to execute bash jobs

919.3
Complications with find

91Managing find’s error output

91Writing find commands that use ls to access directories by name

91Using find commands in the presence of directory entries that contain nonstandard characters

91Problems created by filenames with nonstandard characters

92Making find work in the presence of nonstandard filenames

9410.
Key Commands for System Administration

9410.1
Observing User Activity: ps, top

9410.2
Managing User Accounts

94useradd, usermod, userdel. Configure user accounts.

94groupadd, groupmod, groupdel. Configure user groups.

94yppasswd, passwd. Manage user passwords.

9410.3
Monitoring Local Network Status

9510.4
Monitoring Wide-area Network Status

95ping. Determine whether a remote host is active.

95traceroute (tracert). Determine routing from the local host to a remote host.

95whois. Query (Internet-wide) whois databases for attributes of remote networks.

95nslookup: access a DNS database

9610.5
Managing Backups: tar, Compression Utilities

96Background: purpose, basic switches (c, x, t, r, u)

97Archive compression

9710.6
Managing File System Problems

97files whose names begin with -

97filenames with non-printing characters

98hidden files.

98inaccessible files.

98applying any operation to a directory tree.

9911.
Other Commands and Features

9911.1
Switching Between Working Directories: pushd, popd

9911.2
Alternative Names for Standard Commands: alias, unalias

9911.3
Additional Options for ls

9911.4
Remote command execution: r--- commands

99Basics of r--- commands

100rsh with tar: a useful idiom

100Problems with r--- commands

10212.
Where to Learn More

103Appendices

103A.
Luke Pargiter’s UNIX quick reference

104B.
Using remote terminal emulators to access a UNIX computer

104Telnet

104Using point-and-click to access a telnet utility from the Windows environment

104Using an MS/DOS command to access a telnet utility from the Windows environment

104Using telnet from a UNIX host

105Resizing the remote window

105Putty

106C.
Using ftp to transfer files to and from UNIX environments

106Standard ftp Procedure

106Anonymous ftp

106ftp Commands

107Sending an ASCII File Using ftp (sample session)

107Retrieving an ASCII File Using ftp (sample session)

108Sending or Retrieving a Binary File Using ftp

108ftp via HTTP

108ncftp

108Using ftp-based Utilities to Explore a Remote Site

108Special File Transfer Formats

109UNIX vs. DOS/Windows Text File Encodings: Two Cautions

110D.
Data for UNIX Filter and Shell Examples: DNS zone dumps

110About Zone Dumps

110Address record types

110SOA (start of authority) records

110A (host address) records

110CNAME (canonical) records

111MX (mail exchanger) records

111NS (name server) records

111SRV (service locator) records

111TXT (text) records

111Other

112Special zone dump notational conventions

112Initial space

112Initial @

112Final period

112Using nslookup and awk to get a Clean Zone Dump

112Using nslookup to obtain a zone dump

113Using awk to make zone dumps easier to analyze

113joinlines.awk

114expand.awk

114Using grep to extract Address Records from a Zone Dump

115References for this appendix

116E.
The awk programming language: command action syntax

116Basic syntactic constructs

116Array manipulation

116File (stream) I/O support

116Format control

117String access and manipulation functions

117Random-number generation functions

117Command execution

118F.
The vi editor: a guide for hardcore UNIX users

118Why vi?

118Starting vi

118Key vi visual mode commands

118Basic visual mode commands

118Status commands

119Basic cursor positioning commands (one-keystroke commands)

119Screen positioning commands

119Simple text search commands

120Simple text modification commands

120Mode change commands

121Other useful visual mode commands

121Marking commands

121Text buffering

121Text recovery following deletions

121Shell escapes -- the ! command

122Key vi insert mode commands

122Basic "one line ex-mode" commands

122File manipulation commands

122Text substitution

123Text movement and copy

123Range qualifiers

123Setting options

123Abbreviations (insert-mode macros)

123Macros

123“Ex” mode commands

1. Introduction

1.1 What is UNIX?

UNIX, strictly speaking, is one of several multi-user operating systems developed by organizations that held the right to the name UNIX. Here,

· operating system refers to a program that manages a computer’s operation: e.g., starting and stopping programs; reading from the keyboard and writing to the CRT; and opening, updating, and closing files.

multi-user refers to an operating system that allows multiple users to use the computer at once, in a way that assigns each user a separate identity, for the purpose of enforcing access policies.
The first UNIX system, AT&T UNIX, was developed at AT&T’s Bell Labs in the early 1970's. Other systems named UNIX have included Berkeley Standard Distribution (BSD) UNIX, a reengineering of AT&T UNIX by graduate students at U. California-Berkeley during the early 1980’s, and SCO UNIX, a product developed by the company that, as of 2004, owned the copyright on the name UNIX.
More commonly, people use UNIX to refer to any operating system that has the basic look and feel of AT&T UNIX. Key characteristics of a UNIX-like system include support for
· multi-user operation, including named accounts, a permission-based file system, and default user directories;

· keyboard entry—rather than, say, graphical user interfaces—as the primary means of user input;

· a standard set of command-line-based commands, with names like cd, ls, chmod, and grep;

· a style of device management that treats terminals, keyboards, disk drives, and other peripheral devices as special kinds of files in a single, unified hierarchical file system;

· a file-system-based approach to data security that uses read, write, and execute permissions, relative to four categories of users, to manage file access; and

a style of data processing based on text-transforming programs known as filters.
This document will follow common usage, and use UNIX as shorthand for UNIX-like system: i.e., any system that implements the basic look and feel of the original AT&T UNIX.

1.2 Why Study UNIX?

UNIX, though old by computing standards, is still used and useful. Sandy Reed, in the 2 August 1999 issue of InfoWorld, discussed a survey of 788 organizations that found that 46% had systems that ran systems that ran UNIX. While 46% was a substantially smaller market share than that enjoyed by Microsoft systems (90%), there is a high demand for people trained in UNIX.

UNIX should remain a viable product for years to come, its archaic interface notwithstanding. The UNIX operating system has qualities that make it, rather than Microsoft systems, the system of choice in a variety of environments. Reports in the trade press continue to characterize UNIX as a more stable, secure, and affordable than any Microsoft operating system. And one UNIX variant, Linux, is heavily supported by IBM; freely available; and open to inspection and modification by any user, at no cost.

1.3 What’s in this Document?

This document, which began as a set of help files, has evolved into a reasonably informative, low-cost guide for teaching a one-credit course on UNIX. The current version covers the following material:

· Chapter 2, an overview chapter, discusses UNIX’s history, lists UNIX’s basic features, and compares UNIX to MS/DOS, the one UNIX-related system that Windows users are most likely to have seen.

· Chapter 3, Getting Started, discusses commands for initiating a UNIX session; basic UNIX procedures for entering commands; and sixteen basic commands, including password and file-system-related commands.
· Chapter 4 describes nano, a straightforward character-interface-oriented text editor.

· Chapter 5, UNIX File and Directory Management, covers commands for file attribute management, including commands for managing files with problem names.
· Chapter 6, Managing UNIX Command Execution, covers the basics of interactive UNIX command execution, including path variables, command recall, file redirection, and job and task management.
· Chapter 7, An Introduction to UNIX Filters, describes ten UNIX commands that incrementally modify text streams: commands that are designed to be chained together to transform inputs into outputs.

· Chapter 8, Bash Shell Scripting, discusses bash mechanisms for automating command execution.

· Chapter 9, find, describes a command that searches directory trees for entries with user-specified attributes, and then applies user-specified commands to those entries.
· Chapter 10, Key Commands for System Administration, lists commands for observing user activity; managing user accounts; monitoring local and wide-area network activity; and supporting system backups.

· Chapter 11, Other Commands and Features, discusses commands omitted from previous chapters, including commands that support command aliasing (alias/unalias), current directory management (pushd/popd), and remote task execution.

Chapter 12, Where to Learn More, concludes with a short list of recommendations for further reading.

Six appendices supplement the material in the tutorial:

· Appendix A contains a short “cheat sheet” of UNIX commands.
· Appendix B discusses the use of the telnet and putty remote terminal emulators to access UNIX computers, like einstein.etsu.edu.
· Appendix C describes the use of ftp to transfer files to and from the UNIX environment.
· Appendix D describes a network configuration format known as a zone dump, and explains the use of the nslookup utility to obtain zone dumps. Note: Zone dumps are used to illustrate the operation of filters and bash scripts in Chapters 7 and 8 of the main primer.
· Appendix E describes the command language supported by awk, a UNIX utility for text processing.
Appendix F discusses the classic UNIX text editor vi. The appendix includes a synopsis of vi commands.

1.4 What’s Missing from this Document?

The tutorial’s primary limitation is the lack of material on UNIX windows managers and their supporting utilities. This lack of material on UNIX GUIs stems from a variety of considerations, including the amount of material already in this document, relative to its use in a one-credit course; the importance of command line processing in the UNIX environment; the not-for-profit nature of this primer; and the ready availability of references that cover UNIX GUIs.
2. UNIX and UNIX-Like Systems: An Overview

2.1 A Short History of the UNIX Operating System (and its Look-Alikes)

Sources: The UNIX Operating System, K. Christian and S. Richter, c. 1993, John Wiley and Sons

The UNIX Hater’s Handbook, S. Garfinkel, K. Weise, and S. Strassman, c. 1994, IDG Books

“X Windows System”, Wikipedia, http://en.wikipedia.org/wiki/X_Window_System [accessed 5 July 2004]
In the late 1960’s, AT&T, GE, and MIT contracted with the US Dept. of Defense to create a massive and secure multi-user computer: the computational equivalent of an electrical power plant. This effort, the MULTiplexed Information and Computer System (MULTICS) project, achieved all its goals but one—usability. The finished system, unfortunately, far outstripped the hardware of its time. To quote Garfinkel, Weise, and Strassman,

 [Multics] was built like a tank. Using Multics felt like driving one.

In 1969, AT&T withdrew from the MULTICS project, leaving AT&T researcher Ken Thompson with time to work on other projects. One of these projects was a computer game called Space Travel, which was being designed to run for a new, less expensive computer that lacked a native operating system: Digital Equipment Corporation’s PDP-7. Thompson wrote an assembler, file system, and minimal kernel for the PDP-7. Thomson’s fledgling operating system, which he termed UNIX, was a scaled-down and simplified MULTICS.

Word got out about UNIX within AT&T. Thompson sent UNIX to a few select groups in Bell Labs, including the Lab’s patent office, which needed a system for text processing. By 1973, UNIX had spread to 25 systems within the research lab, and AT&T had created an internal UNIX Systems Group.
In 1973, another AT&T researcher, Dennis Ritchie, rewrote UNIX in C, a language Ritchie developed for low-level systems programming. The rewrite allowed UNIX to be recompiled for the PDP-11, making UNIX one of the first operating systems to be ported between different architectures. In 1975, Western Electric, then a division of AT&T, started licensing UNIX to universities for a nominal fee—a marketing policy that was part of an antitrust settlement enjoining AT&T from competing in the software marketplace. UNIX’s low cost, in combination with its power, its support for the highly popular PDP-11, and its relative simplicity, led to UNIX’s becoming one of the premier operating systems for computing professionals during the early 1980’s.

UNIX’s popularity, together with its copyrighted status, prompted other organizations to develop copycat systems, many with similar-sounding names: e.g., Irix, Xenix, Xinu, Minix, AIX, Ultrix, Solaris, Free BSD, Debian, and Linux. The typical UNIX look-alikes now support a TCP/IP communications stack; a standard set of programming and production tools, including programming languages, databases, and debugging support software; and X11, a point-and-click interface for UNIX.

UNIX, historically, has been less successful as a desktop product, thanks to its lack of support for an integrated GUI. UNIX was developed in an era when computer hardware was too slow to support fast typists, let alone GUIs. Many UNIX command names (e.g., cp, ls, pr, tr) are throwbacks to a time when modems ran at 110 baud, and reducing keystrokes noticeably improved user productivity. In 1986, MIT’s Project Athena produced X10R3, the first de facto standard windows manager for UNIX-like systems. UNIX, however, continues to be primarily a command-line environment: one where windows are routinely used for command-line-based command entry.

The current revival of interest in UNIX is due to Linux, an open-source operating system that began as a student project. Linux’s predecessor, Minix, was developed by Professor Andrew Tanenbaum (author of Modern Operating Systems, Structured Computer Organization, Computer Networks, and Distributed Systems: Principles and Paradigms) as a tool for teaching operating systems, using early, 16-bit PCs. During the early 1990’s, a Finnish college student, Linus Torvalds, enhanced Minix for new generation of 32-bit PCs. Torvalds’ system, Linux, has evolved into the operating system of choice for ISPs (Internet Service Providers) and consumers of high-performance computing systems. Reasons for Linux’s popularity include its cost (no charge), quality (reasonably high), support (freely supported by an enthusiastic community of users, and IBM), and flexibility: Linux’s openness has allowed it to be routinely tweaked for selected target environments.

2.2 Key UNIX Features—A First Look
User accounts
UNIX is typically configured as a multi-user system. In a multi-user system, each user has a distinct identity, known as an account. Keeping users’ accounts separate enhances system usability by allowing the system itself to enforce policies for controlling access to system resources.
In a typical UNIX system, every account is associated with the following items:

· A distinct home directory. A directory is a logical container for storing files. A home directory is a special directory associated with a specific account. Every user typically stores their own files in her home directory, where these files typically remain, so long as they are not deleted.

· A set of configuration files. Configuration (config) files contain information that specify account-specific, default operating parameters for key system utilities, like command interpreters, e-mail clients, and the X11 GUI manager. These files are typically placed in a user’s home directory, and assigned names that begin with a period and end with “rc” (“resource configuration”).
· A working (current) directory. Every account also has a working (current) directory: a directory that UNIX command interpreters access, by default, when a file’s location is incompletely specified. For example, a command to delete foo.txt would, by default, delete the copy of foo.txt in the current directory.

· A distinct password. A password is a combination of characters that, one hopes, is known only to the user. UNIX uses passwords to help ensure that all attempts to use system accounts are legitimate.

· A set of files and directories. UNIX systems pair every account with a (possibly empty) set of files and directories, which that account is said to own. An account that owns a file (or directory) can restrict the rights of other accounts to access that file (or directory). As a rule, an ordinary account cannot access any of a system’s sensitive files, or any other account’s files (and directories), unless explicit permission has been granted for cross-account access.

UNIX systems also support a special kind of account, a super user account, which entitles its users to run any program they please and to manipulate any file in any way they choose. In a standard UNIX system configuration, access to superuser accounts is limited to system administrators and other trusted personnel.

A command interpreter. A UNIX system’s master list of accounts pairs every account with a default command interpreter, known as a shell. If an account’s initial shell is a general-purpose command interpreter, a user can usually change shells by starting a different shell. Common shells include the C Shell (csh), the Bourne Shell, the Korn Shell (ksh), and the Bourne-again Shell (bash).
User groups
A group is a set of accounts that share a common set of file system access rights. System administrators (i.e., superusers)—the only users who may create groups—typically do so to make it easier for people to share files. Specifically, a person who owns a file (or directory) named foo may impose two different sets of access constraints on foo: one, (presumably) more permissive set of constraints for others in that user’s group, and a second, (presumably) more restrictive set for all other users.

Early UNIX systems assigned every user to exactly one group. Newer UNIX systems typically allow users to be assigned to one or more groups.
Logging in and logging out
Multi-user UNIX systems require users to submit to a challenge as a precondition for using a system’s command interpreters. Prospective users must first enter the account they wish to use, together with that account’s password. When this process, known as logging in or logging on, is done, the UNIX logon program initializes your account, using the login configuration file .loginrc, which typically sets the working directory to the accounts home directory. On completing a session, a user should log out, to restrict access to valid users.

Accountability
A system’s administrator can configure it to record (log) attempts to execute sensitive commands, like logins, along with the names of the accounts from which these commands were executed. The resulting records (logs) are typically used to check for attempts to subvert system security.

A hierarchical file system
UNIX supports a hierarchical (tree-structured) file system. This hierarchy’s top element is a single, master directory, known as the root directory. The root directory typically contains files and other directories. These second-level directories, in turn, contain other files and directories, and so on.

The following are some of the important characteristics of the UNIX file system:

· UNIX uses pathnames to identify file system objects. A pathname is an optional list of directories—which identify a position in the file system—optionally followed by the name of a file. It’s convenient to distinguish between two kinds of pathnames:

· Absolute pathnames are pathnames that begin with a /. This initial slash stands for the root directory. The absolute pathname /usr/foo, for example, refers to directory or a file named foo that is contained in a directory named usr, which, in turn, is contained in the root directory.

· Relative pathnames are pathnames that don’t begin with a /. UNIX command interpreters interpret relative pathnames in one of two ways, depending on the pathname’s context:

· Relative pathnames that appear as parameters for UNIX commands are interpreted relative to the current directory. For example, in a command like
print usr/foo
the relative pathname usr/foo refers to a directory or file named foo in a directory named usr, which, in turn, is contained in the working directory.
· Relative pathnames that denote commands are interpreted using a path variable: a built-in list of directories that could possibly contain a user’s commands. See Section 6.3, Resolving Command Names, for a more complete discussion of path-variable-based command resolution.

· UNIX requires every item (entry) in every directory to have a unique name. It’s legal in UNIX, for example, to have two objects (i.e., files or directories) named foo, so long as they are in different directories: say, /foo and /usr/foo. It is not legal, however, for any one directory to contain two objects named foo.
· Every file and directory has an owner. Files and directories, as a rule, are initially owned by the accounts that create them. Superusers, and superusers alone, also have the authority to change a file’s owner.
· Every directory entry has permissions. Special attributes associated with every directory entry, known as permissions, control how that entry may be used and accessed. UNIX systems associate three kinds of access permissions with every file and directory:

· permission to read.

· permission to write.

permission to execute.
UNIX systems also associate three different sets of permissions with every entry:

· read/write/access permissions for the file’s owner.

· read/write/access permissions for other accounts share a common group with the file’s owner.

· read/write/access permissions for all other users.

Command line entry
UNIX remains an operating system for people who remember the names of commands (rather than icons), and who are good typists (rather than mouse users).

2.3 UNIX vs. MS/DOS: Similarities and Differences

New UNIX users who have used an MS/DOS (or Windows) command prompt may find UNIX easier to learn than they expect. MS/DOS was based on a system called CP/M, which, in turn, was a variant of UNIX.

Key similarities between UNIX and MS/DOS

File systems
· Both systems support native hierarchical file systems that consist of files and directories.

· In both systems, the name of every object (file or file folder) in every folder must be unique.
· Both support text files: files of printable characters that use newlines to split blocks (lines) of content.
· Both have a nameless directory at the top of every file system hierarchy, known as the root directory.

· Both use pathnames to denote a position in the hierarchy.

· Both assign a current directory—also known as a working directory—to every user at all times.
· Both support the use of ‘*’ and ‘?’ in pathnames to mean ‘any sequence of characters’ and ‘any one character’. (UNIX’s algorithm for matching ‘*’ and ‘?’ against file names, however, works properly.)
· Both use ‘.’ in pathnames to denote the current directory, and ‘..’ to denote the parent directory.

· Both have commands that copy, rename, show, and delete files; that copy, list, and delete directories; and that copy directory trees.

Command interpreters
· Both systems have command line interfaces.
· Both systems’ standard command interpreters support pipes: operating system buffers that feed (pipe) one command’s output into a second command’s input. Both systems also use syntax like

command1 | command2

to represent the forwarding of the output of a first command (here, command1) to the input for second (here, command2).
Key differences between UNIX and MS/DOS

Operating environments
MS/DOS was designed as a single-user system, without password protection, accounts, or home directories. UNIX is typically configured as a password-protected, multi-user system. Every UNIX account is assigned a home directory, which that account typically owns, and which serves as that user’s initial working directory.
File systems
· MS/DOS presents users with a low-level, device-oriented view of system storage. MS/DOS users may access up to 26 distinct, device-resident file systems at a time. These file systems are “activated” (mounted) by mapping them to one of 26 built-in MS/DOS “logical” devices, named A: … Z:. Every active logical device is associated with its own working directory by the command interpreter, which also maintains a current, working device. Every active device-based file system is treated as a distinct system: a pathname that begins with A:, for example, cannot name files on a logical device B:.
UNIX presents users with a more abstract, unified view of system storage. UNIX users see exactly one file system at all times. This file system, however, can support access to an unlimited number of devices, all at once. This extra flexibility stems from how UNIX file systems are configured. The UNIX file system maintains a table that associates every “active” (mounted) physical device with a directory (mount point) in the overall directory hierarchy. For starters, one file-based device must always be associated with (mounted on) the system’s root directory, /. Other devices can be mounted on other, predetermined directories of /: for example, a directory with a name like /zip might be reserved for mounting a zip drive.

The UNIX approach strategy for supporting file-based devices is the more flexible of the two strategies, but it is also the more complex to manage. In practice, most multi-user UNIX systems make the system administrator solely responsible for managing device configuration.
· MS/DOS has no notion of file ownership. In UNIX, on the other hand, a specific user owns every file. A file’s owner controls access to that file by other users.

· In MS/DOS, pathname separators are backward slashes. In UNIX, separators are forward slashes: an MS/DOS absolute pathname like A:\phil\x.txt might be rendered as /usr/phil/x.txt in UNIX.

· UNIX, unlike MS/DOS, imposes only two restrictions on file names. One is that file names cannot contain nulls (\000). The other is that file names cannot contain the forward slash character (‘/’). Otherwise, there are no restrictions on either a filename’s length or makeup.

Even though UNIX is liberal about file name content, it is still a good practice to construct file names strictly from letters, numbers, periods, and underscores (‘_’). UNIX command interpreters commonly interpret special characters like, ‘~’, ‘ ’, ‘?’, ‘!’, ‘$’, and ‘*’ in special ways, and are usually better avoided.

· In MS/DOS, file names are case-insensitive. An MS/DOS directory, for example, cannot contain two files named X.TXT and x.txt. In UNIX, file names are case-sensitive: UNIX, for example, treats X.TXT, x.txt, X.txt, and x.TXT as four distinct file names.

MS/DOS and UNIX text files use different formats. MS/DOS uses two special characters to delimit lines: ASCII 13 (control-M), followed by ASCII 10 (control-J). UNIX uses one delimiter: ASCII 13. Because of this difference, care must be taken when moving files from MS/DOS to UNIX, or vice-versa. For more information, see the material in Appendix C on ftp and file transfer.
Command interpreters
· A standard MS/DOS command checks for options at the end of the command string. Options are flagged with a forward slash. A standard UNIX command checks for options immediately after the command name. UNIX options are flagged with a leading –, +, or --, depending on the command. For example, the “–C” in the UNIX command ls –C *.txt, like the “/W” in the MS/DOS command dir *.txt /W, is an option that specifies multi-column format.

MS/DOS commands, like MS/DOS file names, are case-insensitive. UNIX commands, like UNIX file names, are case-sensitive. In UNIX, typing MORE, More, or mOrE does not, as a rule, invoke the more command.
Command names
A typical MS/DOS command has an easy-to-read name: e.g., copy. The names of many UNIX commands, on the other hand, are “vwl-lss” (vowel-less): e.g., cp. UNIX’s abbreviated names are an anachronism that dates to an era when computer terminals processed 13 characters per second, and omitting a few letters made interaction faster.
2.4 UNIX Classic vs. UNIX New

In places, this document refers to “classic” and “newer” versions of UNIX utilities. To the best of this author’s knowledge, most of the programs that this document describes have been part of UNIX since the early AT&T UNIX distribution (cf. Software Tools, P.J. Plauger)
. These commands, however, have evolved
, adding new options and changing default behaviors:
· Some commands have added new options for reasons of convenience. For example, newer versions of the word count utility, wc, have an option, –L, that returns the length of the longest line in the input.
· Other commands have added options that correct design errors in the original utilities. For example, newer versions of the directory search utility, find, have a –print0 option that uses nulls rather than newlines to separate items in its output. –print0 is important for working with file names that contain newlines, as explained in Chapter 9, Find.
· Still other commands have added support for binary files. For example, the head command, which was originally designed for text files, added a –b option that returns the first n bytes from foo.dat. In many cases, the binary-file-enhanced versions of the classic UNIX filters no longer support a default mode of operation. Newer versions of head, for example, require a user to specify whether head should return a file’s first n bytes (–c) or lines (–n). Failing to specify either –c or –n with newer implementations of head causes this command to print an error message.

A final set of changes involves support for two styles of command line options: the classic ‘+’ and ‘-’ single-letter syntax, and a newer, ‘--’ syntax, with more verbose option names.

Since these changes, as a rule, have been implemented by adding new options while leaving old options unchanged, the descriptions of options in this document should apply to all common implementations of UNIX commands. Still, it’s always safest to check how a command works on your system before using that command.

Finally, no attempt is made to cover the more verbose, ‘--’ forms of the command line options, or to discuss every option for every command—including that one magic option that solves the problem you need to fix. Again, it’s always safest to check how a command works on your system before using that command.
2.5 UNIX at ETSU

ETSU’s computer science department, as of this writing, operates one computer that runs a UNIX-like operating system: the Linux-based einstein.etsu.edu (IP address 151.141.90.51). einstein.etsu.edu supports character-based secure shell connections from external machines (see Appendix B for details).
3. Logging In and Entering Commands
3.1 Accessing a Command Prompt

All access to a standard UNIX system and its resources—its terminals, devices, file systems, and networks—is obtained via the UNIX command prompt. The command prompt is a recurring string at the beginning of a line that asks the user to enter a command. This string can look like an arrowhead

>

a percent sign with a machine name

einstein %

a dollar sign with a program name

bash$

or something else entirely. In every case, however, the prompt is a recurring string, displayed at the start of a line that asks the user to supply a command.

The standard UNIX command prompt allows a user to execute programs and other standard UNIX commands. What exactly a command prompt can do, however, depends heavily upon how a user gained access to the prompt. UNIX restricts access to command prompts by requiring every user to establish an identity before executing commands. This procedure for establishing identity, known as logging in, prevents unauthorized users from accessing a UNIX command prompt. The login procedure also establishes what the current user of a computer terminal can and cannot do. As part of logging in, a user must specify an account: an identity that is associated with a set of permissible actions. Accounts enhance security by making users accountable for their actions, and by allowing the system to prevent the execution of potentially unsafe or unfriendly commands: for example, deleting another user’s files.

The UNIX login procedure is a two-part procedure. A user who wants to use a UNIX system must first supply the system with an account name. The user’s identity is then confirmed with a password—a second, secret identifier for the account that should only be known to the account’s user. If the supplied account is valid, and the supplied password matches the supplied account, then the login procedure completes, giving the user access to a prompt. If the procedure fails, the user must retry, submitting a valid account/password pair before being allowed to issue commands.

The opposite of logging in is logging out. When a user’s work is finished, that user should end the current session by entering the logout command. logout withdraws permission to use the current prompt, forcing subsequent users to re-login before doing work. Logging out helps to prevent subsequent users from issuing commands in the current user’s name that the current user might regret—e.g., deleting the current user’s files.

3.2 Entering Commands

Standard UNIX commands are entered by typing them after a prompt, and hitting the Enter key. A couple of special control keys simplify command entry by allowing users to redo or see their input:

· ^H (control-H) erases the character just typed. Often, the backspace key has the same effect as ^H.

· ^U (control-U) erases the line just typed.

^R (control-R) shows the line being typed. ^R is particularly useful for redrawing lines in jumbled screens.

Another useful special character, \, if used as the last character on a line, continues the current line to the next.

3.3 Sixteen Basic UNIX Commands
The sixteen commands

The following 16 common UNIX commands are basic to an ability to use UNIX effectively:
login – begin a session

(no MS/DOS equivalent)

passwd – change local password

(no MS/DOS equivalent)

yppasswd – change network password
(no MS/DOS equivalent)

man – read system manual pages

(no MS/DOS equivalent)

pwd – identify the working directory
(like cd with no argument)

cd – change the working directory

(like cd, but see below)

echo – display a string

(like echo)

ls – display contents of directory

(like dir)

cat – display text of file

(like an unintelligent type)

more – display text of file

(like an intelligent more, or type)

cp – copy a file

(like copy with xcopy capability)

mv – move a file

(like rename, but also works for directories)

rm – remove a file

(like del)

mkdir – create a directory

(like mkdir)

rmdir – remove a directory

(like rmdir)

logout – end a session

(no MS/DOS equivalent)
login – Begin a UNIX session

login, when executed, asks for a name and password. If a valid name and password are supplied, the user is given access to a command-line interpreter, and placed in her home directory.

passwd – Change password (on local system)

passwd first asks for the user’s current password. If the supplied password is correct, the program then asks for a new password, twice. If the two new responses match, the password is changed.

yppasswd – Change password (throughout local network)

yppasswd (“yellow pages password”) is like passwd, except that yppasswd changes a password across a network of UNIX computers when network-wide passwords are in use. If network-wide passwords are in use, use yppasswd instead of passwd, unless your admin tells you to do otherwise.

man – Read manual pages

man provides on-line help. man is invoked by typing

man xx

where xx is the name of a UNIX command or topic. man also has a –k option that searches the manual by keyword:

man –k password

for example, should return help on the man command. On some systems, apropos is short for man –k.

pwd – Identify working directory

pwd shows the working directory—a user’s default position in the directory tree.

cd – Change working directory

cd changes to the specified working directory in the directory tree. The UNIX cd command has two forms:

· The first, cd, sets the working directory to the user’s home directory. This argument-less version of UNIX’s cd command differs markedly from MS/DOS’s standalone cd, which acts like UNIX’s pwd.
· The second, cd pathname, sets the working directory to the directory specified by pathname. cd, like other UNIX commands, interprets pathnames in one of five ways:

· / at the start of a pathname denotes the file system’s root directory. For example, cd / changes the working directory to root; cd /usr/bin changes the working directory to the bin subdirectory of the usr subdirectory of the root directory.
Pathnames that begin with / are called absolute pathnames. Other pathnames are relative pathnames.

· The one-character pathname ~ is shorthand for the user’s home directory. For example, cd ~ changes the working directory to the current user’s home directory.

· ~/ at the start of a pathname is shorthand for the current account’s home directory. For example, cd ~/foo changes the working directory to the foo subdirectory of a user’s home directory.

· ~x at the start of a pathname, where x is any string of characters that neither begins with nor includes a / or a null, is a shorthand for account’s x’s home directory. For example, cd ~phil changes directory to user phil’s home directory.

· A pathname that begins with any character other than / or ~ is interpreted relative to the working directory. This includes the following two special forms of cd:

cd .
Change directory to the current directory (a no-op)

cd ..
Change directory to the current directory’s parent directory
In UNIX, executing cd .. in the root directory has no visible effect, since UNIX treats / as is its own parent. This is similar to what happens with the newer Windows command prompt, but different from classic MS/DOS, where cd .. fails because the root directory has no parent.

echo – Display a string

echo outputs its arguments, with one space between every argument. For example, executing

echo hello there

at the keyboard outputs hello there to the screen, followed by a newline. To suppress the trailing newline, use the –n option, as in

echo –n this line ends abruptly

ls – Show (list) information about a file system object
ls shows information about a file system object. ls is typically invoked in one of two ways:

· The first, ls, is short for ls . ; this command lists all files and directories in the working directory.
· The second, ls pathname, presents information about pathname. By default, ls pathname returns

· an error when pathname is undefined;

· a list of pathname’s contents when pathname refers to a directory; and

· the string pathname if pathname refers to a file.
The ls command’s options direct ls to return other types of information about files and directories. The following are a few of ls’s options:

· –F (as in ls –F) displays type information at the end of every entry in a directory: e.g., / after the name of every directory, and * after the end of every executable file.

· –l (note: lower-case-l, not the digit 1) prints detailed information on each of a directory’s entries—a topic covered elsewhere in this primer.

· –a displays information on all entries (items) in a directory, including hidden entries. A hidden entry is a file or folder whose name begins with a period (.): e.g., ., .., .login, .bashrc. ls normally omits hidden entries them from directory listings, similarly to how Windows Explorer handles files whose hidden bit is set. . and .. are synonyms for the current and parent directory, respectively. Other hidden entries are typically files or directories that support normal UNIX operation: e.g., that contain directives and parameters that specify the operation and appearance of programs like command interpreters and window managers.
–A displays information on almost all entries in a directory: i.e., all entries except . and .. .

cat – Display a file

cat outputs a specified file’s contents, in order from start to finish. cat is typically invoked by typing

cat pathname
where pathname specifies the file to output. cat outputs the entire file without pause, regardless of length.

cat, as a rule, should only be used to display the contents of files, like text files, that consist strictly of printable characters. Attempting to use cat to display a file with unprintable characters can inadvertently confuse the screen controller, and scramble the display.

more – Display a file, interactively
more, like cat, outputs a specified file’s contents in order, from start to finish. more is typically invoked by typing

more pathname

where pathname specifies the file to examine.

Unlike cat, more displays files that span two or more pages interactively. more first displays a screen of text, then waits for a keystroke. Any of the following keystrokes can then be used to change more’s output:

· pressing space bar advances to the next screen of text.

· pressing the return key advances one line.

· pressing the b key takes returns to the previous page.

pressing the q key exits more.

Other options skip pages, and search for specific words; use man more for more options.

more, like cat, should only be used to display the contents of files that consist strictly of printable characters.
cp – Copy files
cp makes copies of files. The cp command is typically invoked by typing

cp pathname_for_sourcefile pathname_for_copied_file
where pathname_for_sourcefile and pathname_for_copied_file should be self-explanatory. A second form of the cp command

cp pathname_for_source_directory pathname_for_copied_directory
copies pathname_for_source_directory, without copying that directory’s contents. To copy the directory’s files as well as the directory, use
cp pathname_for_source_directory/* pathname_for_destination_directory
Here, * is a special wildcard character that represents all files in the source directory. Two special instances of this “copy contents” command are

cp sourcedir/* .
which copies files into your (current) working directory, and

cp sourcedir/* ~

which copies files into your home directory.

rm – Remove a file

Basics of rm operation

rm eliminates files from the system—permanently. A command like
rm pathname_for_file
eliminates the file denoted by pathname_for_file.

rm can also be used with a list of filenames: a command like
rm file1 file2 file3 file4 file5 file6 file7

like the tailor in the brothers Grimm fairy tale, kills seven at one blow.

rm, as a safety measure, will not ordinarily remove directories. rm’s –r (recursive) option eliminates entire directories, including any and all subdirectories that these directories contain. A command of the form

rm –r directory_pathname
eliminates directory_pathname as well as any files and subdirectories that directory_pathname contains.

rm is often used with one of two other options:

The –i (interactive) option causes rm to prompt for explicit permission to delete every file in the specified list of pathnames, one file at a time. For example, the command

rm –i file1 file2 file3
prompts the user three times for permission to delete a file: once for file1, once for file2, and once for file3. The user must enter y to the appropriate prompt to ensure that the specified file is deleted.

The –i option can be used in conjunction with the –r option to do a systematic, interactive cleanup of a directory tree. The user will be given the option to delete every file and directory in that tree, one file system object at a time.
The –i option can be made the default by entering the command

alias rm "rm –i"
(see under Unix Power Commands) at any point during a user’s session. For example, when rm is aliased to rm –i, a command like
rm file1 file2 file3

prompts three times for permission to delete these three files, even though –i was never explicitly typed.
Some people alias rm to rm –i as a safety feature. Some system administrators define this alias for users as a matter of course when they configure new accounts. If you find your rm command is behaving like rm –i, and prefer the speed of bare rm to the safety of answering prompts, entering
unalias rm

should eliminate this behavior.
The –f (force) option directs rm to continue to remove files after an attempt to remove one or more files has failed. A command like

rm file1 nosuchfile file2 file3
where nosuchfile does not exist, will normally remove file1, print an error message about not removing nosuchfile, and exit, leaving file2 and file3 intact. Entering

rm –f file1 nosuchfile file2 file3
instead removes file1, file2, and file3, and suppresses the error message about nosuchfile.
The standard rm file deletion algorithm: security implications

Standard implementations of rm are potentially insecure, since they return a file’s disk space to the file system’s master pool intact, without obliterating the deleted file’s data. This failure to obliterate content is like tossing a document into a wastebasket without shredding it. It is true that a file’s discarded content cannot be recovered by any standard UNIX utility. Some vendors of forensic software, however, sell tools that recover the current contents of any block on disk, whether part of a file or not. And even utilities that overwrite deleted data multiple times do not protect that data from electromagnetic signal analysis techniques for recovering the residue of deleted data
.
mv – Move (rename) files

The mv command is a two-argument command that works in one of four ways, depending on its arguments.
· When mv’s first argument does not name a known object, mv fails, returning an error message.

· When mv’s first argument names a known object, but not the second, mv renames the first to the second:

mv foo.txt bar.txt

- renames the file foo.txt to bar.txt
mv fooDirectory barDirectory
- renames the directory fooDirectory to barDirectory
· When mv’s first argument names a known object, and the second names a directory, mv relocates its first argument into the directory named by the second object
mv foo.txt destinationDir

- relocates file foo.txt from . to destinationDir
mv fooDirectory destinationDir
- relocates directory fooDirectory from . to destinationDir
· When mv’s first argument names a known object, and the second names a file, mv tries to delete the file named by the second argument, and to change the name of its first argument to the second:

mv bar.txt foo.txt

- tries to rm foo.txt, then rename bar.txt to foo.txt
mv destinationDir foo.txt

- tries to rm foo.txt, then rename destinationDir to foo.txt

This attempt to replace the second object with the first may not succeed. Some command interpreters have a safety feature that, when enabled, prevents commands like mv from overwriting existing files. In bash, for example, set –o noclobber and set +o noclobber disable and enable overwriting, respectively.
mkdir – Create a new directory

mkdir creates directories. For example, a command like

mkdir tutorial

creates a new subdirectory in the current directory named tutorial.

rmdir – Remove a subdirectory

rmdir removes empty directories. For example, a command like

rmdir tutorial

removes an empty subdirectory in the current directory named tutorial.

Subdirectories that contain files cannot be removed with rmdir. Either remove all files in the directory before using rmdir, or use rm –r, if appropriate.
logout – End a session

The logout command should be entered at the end of a session to disable further access to an account’s command prompt. Some shells also support exit and ^D (control-D) as synonyms for logout.
4. The nano Text Editor

4.1 Background

A text editor is a program that allows a user to enter text—typically, printable characters—into a file. Text editors, unlike word processors, are designed for simplicity and speed. Word processors are useful for producing eye-pleasing documents. Text editors, on the other hand, are useful for keying in programs and other files that don’t need special formatting to be usable.

nano is a freeware clone of pico: a simple, widely used, and freely available text editor. pico, which is short for “pine corrector”, was developed as a message composition utility for pine, a free e-mail utility developed at the University of Washington. nano, unlike pico, can be installed independently of any mail utility.
4.2 Starting nano
nano is commonly invoked in one of two ways. Issuing the command

nano
allows the user to type text into an empty workspace not yet associated with any file. Issuing a command like

nano myfile.txt

allows the user to edit myfile.txt, or to create myfile.txt if this file does not yet exist.

nano, when started, clears the current screen image, and replaces it with a three-part display:

· The display’s top line shows the version of nano in use, highlighted in reverse video, along with the name of the file being edited, if any. For example,

· GNU nano 1.2.1 New Buffer

— should appear after issuing the command nano on einstein.etsu.edu.
· GNU nano 1.2.1 myfile.txt

— should appear after issuing the command nano myfile.txt on einstein.etsu.edu
· The display’s middle section is nano’s workspace. The workspace should be blank after entering nano, and should show the initial lines of myfile.txt after entering nano myfile.txt.

· The display’s bottom two rows initially show nano’s twelve basic commands:
	^G
	Get Help
	^O
	WriteOut
	^R
	Read File
	^Y
	Prev Pg
	^K
	Cut Text
	^C
	Cur Pos

	^X
	Exit
	^J
	Justify
	^W
	Where is
	^V
	Next Pg
	^U
	UnCut Text
	^T
	To Spell

These twelve ^-character pairs are control sequences: commands generated by simultaneously pressing the control key and the specified letter. For example, depressing the control key and typing C (control-C, ^C) generates a message like the following on the third line above the bottom of the screen:
	[line 1/1 (100%), col 1/1 (100%), char 0/0 (0%)]

4.3 Using nano to Enter Text
Using nano to enter text is like using Notepad, PFE32, or other common screen-oriented editors. nano uses a cursor, represented by an underscore, to track the current position. The current position is a point between two characters in the workspace that can be updated by the next editing operation, as follows:
· Typing a character puts it into the workspace after the current position, and then advances the current position by one character.
· Typing the return key adds a new line to the workspace after the current position, and then advances the current position by one line.
· Pressing an arrow key moves the cursor and the current position in the indicated direction.

Pressing the delete key erases the character just before the current position, and moves the current position back by one character.
4.4 Managing Long Lines
nano, when it has been invoked without options, automatically inserts a new line into the current file when the current line becomes wider than the current display. This feature, which is known as word wrapping, is useful for composing e-mail: the task for which nano was originally designed. Word wrapping, unfortunately, creates problems for composing programs and other text documents for which line breaks are significant.

To disable word wrapping, start nano with the –w option:
nano –w

opens a new, unnamed file without word wrap
nano –w myprog.c
opens myprog.c without word wrap

When nano is invoked with –w, continuing a line beyond the display’s right-hand edge causes nano to shift its window on the current file to the right. A $ then appears on the current line, in the screen’s far left-hand column, to signal the shift. The $ is then followed by the tail end of the current line.
When an overly long line is ended by pressing enter, the window returns to the original left-hand margin. After the window shifts, nano displays $ in the far right-hand column of all overly long lines.

4.5 Other nano Commands
^K (cut) removes the current line from the workspace, saving it in a temporary buffer (holding area). Entering ^K repeatedly inserts successive lines into this internal buffer, one after the next. ^U (uncut) inserts the last block of text cut by the last unbroken sequence of ^K commands into the workspace, at the current position.

^R reads a file into nano at the current cursor position. ^R, when issued, prompts for a file name, then provides the user with three supporting options:

· ^G displays a short help message for the command.

· ^C cancels the command.

^T displays a menu of files in the current directory, and a second menu of options that allows you to select one of these files to be read in.

^V and ^Y move the cursor down and up by one page, respectively.

^O writes the contents of the current buffer into a file. ^O operates like the ^R command.
^W command locates a string in the current buffer.

^J justifies the current paragraph. This command, when typed accidentally, can be a real nuisance. The author knows of no way of disabling ^J.
^G lists all nano commands. Of the remaining nano commands that aren’t ordinarily displayed at the bottom of the screen, the three most useful are

· ^A - move to the beginning of the current line.

· ^E - move to the end of the current line.

^D - delete the next character; i.e., the one that follows the current cursor position.

^T invokes the spelling checker.

^X exits nano. If the current file contains unsaved changes, nano asks whether these changes should be saved—and, if so, the name of the file to which they should be saved.

4.6 nano.save
During an edit session, nano automatically creates a file, nano.save that preserves unsaved and abnormally terminated edit sessions. As a rule, any file named nano.save that is not associated with an active or unrecovered edit session can be safely removed.
4.7 nano and Remote Logins
What to do when nano won’t start
nano expects to run on a terminal that supports a terminal protocol known as VT100. The VT100 was a defunct character-oriented terminal that was manufactured by a now-defunct computer corporation, Digital Equipment Corporation (DEC), in the 1970’s. The VT100 was highly popular in its era, and its set of keyboard protocols became a de facto standard.

If a command-response sequence like the following occurs at the start of a remote login (see Appendix B)
> einstein 36% nano
Sorry, I don't know anything about your "ansi" terminal.

try directing the remote system to emulate a VT100. The type of emulator in use can be determined by examining the emulator’s “options” or “preferences” menu. If a VT100 is not currently being emulated, try executing the command

set term=vt100

and restarting nano. CASE IS IMPORTANT: entering TERM, Term, VT100, VT100, or vT100 will not work.

How to manage window size problems
A typical remote terminal emulator allows its users to change the size of the command entry window. A standard UNIX system, unfortunately, fails to detect these changes automatically, which can create troubles for an emulator-based nano session. If you enlarge your window nano may fail to take advantage of the larger window. Conversely, shrinking your window may confuse nano about how to display your edit session.

After you resize a remote terminal emulator window, you should immediately issue the following command at the standard UNIX command prompt:

resize
Be sure to wait for this command to complete before trying any other commands. Executing resize causes the command interpreter to check for the number of lines and columns that the current window can support, and to change its internal row count and column count variables accordingly. nano, which uses these row count and column count variables to determine where to place text on the screen, should then draw the display correctly.

5. UNIX File and Directory Management

5.1 Retrieving UNIX File and Directory Attributes

Every object in a UNIX file system is paired with a set of attributes: values that identify information about that item—e.g., its owner, its time of creation—and control that object’s use.

To discover an item’s “principal” attributes, use the ls command with the –l option. ls –l produces listings like the following:

drwxr--r-- 4 phil user 50 Jan 6 21:35 xmx

The first field gives an item’s type and permissions. This field should be interpreted as follows:

· 1st character: item type. The “d” shows that xmx is a directory. An initial – in place of the “d” would indicate a plain file.

· 2nd – 4th characters: user (owner) permissions. Here, “rwx” indicates that the directory is readable, writeable, and executable by the owner.

· 5th – 7th characters: group permissions. Here, “r--” indicates that the directory is readable, but neither writeable nor executable, by members of the owner’s group.

8th – 10th characters: world permissions. Here, “r--” indicates that the directory is readable, but neither writeable nor executable, by members of the owner’s group.

Other fields in this listing show that the xmx directory is referenced by four directories (see below, Section 5.3); that it is owned by “phil”, a member of group “user”; that it contains 50 bytes; and that the xmx directory was last modified on 6 January at 21:35 pm.

Directory entries have two more attributes that can be viewed, using ls options: the time when that entry was last accessed, and the time when it was last modified. See ls’s man page for more information.

5.2 Managing User-Settable UNIX File and Directory Attributes

User-settable attributes: names, permissions, owners, and groups

Depending on one’s point of view, every entry in a UNIX directory has either two or four kinds of user-settable attributes: name, access permissions, and (possibly) owner and associated group.
· Every item in a UNIX directory has a name. Names, which must be unique within a directory, can contain any combination of 8-bit characters, excluding \000 (null) and \056 (/).

· Every item in a UNIX directory is associated with three sets of permissions: one for the directory’s owner; one for the entry’s group; and one for all other users. An item’s permissions constrain how these three sets of users can manipulate that item in each of three ways:

· Permissions on a file constrain the ability to read, write, and execute that file.

· Permissions on a directory constrain the ability to search (i.e., “read”), write, and access files in (i.e., “execute”) that directory.

· Every item in a UNIX directory is owned by an account, which is authorized to set that file’s permissions.
Finally, every directory entry is associated with a group, whose permissions are set by that file’s owner.

From the perspective of the operating system, ownership and group association are user-settable attributes, because of the existence of commands that, when executed successfully, alter these attributes:

chown file1 phil

attempt to assign ownership of file1 to phil

chgrp file1 faculty
attempt to put file1 into the faculty group

chown and chgrp, however, are commands that bypass standard security mechanisms—and, as such, are typically off limits to all users except superusers.

Managing access permissions on UNIX files and directories

UNIX file permissions: a detailed overview

Classic UNIX systems for managing file system permissions distinguish three kinds of users, and three kinds of permissions:

· Three kinds of users. Every file system object is associated with permissions for three sets of users:

· one that determines what rights the object’s owner has to access that object;

· one that determines what rights other users who are in the owner’s group have to access that object; and

· one that determines what rights all other users have to access that object.
· Three kinds of permissions. Every file system object is associated with three kinds of permissions: a read permission, a write permission, and an execute permission. These permissions have slightly different meanings, according to whether the object is a file or directory:
· files.
· read permission means permission to examine the file: for example, using more.

· write permission means permission to modify the file: for example, using nano.

· execute permission means permission to treat the file as code: for example, to invoke it as a command.

· directories.
· read permission means permission to examine the data stored in the directory proper: for example, to examine the directory’s contents, using an ls command.

· write permission means permission to modify the data stored in the directory proper: for example, to change the list of files that the directory contains, by copying a file into that directory.

· execute permission means permission to run a program that accesses files stored in that directory.

In UNIX, the read, write, and execute permissions are mutually independent permissions. In particular, having write permission for a file system object does not imply having read permission (as it does under Windows).
Managing permissions

The UNIX command for specifying a file’s permissions, chmod, accepts arguments in one of two formats:

· Letters specify permissions. In this format, “u” designates user (i.e., the file’s owner); “g” designates group (i.e., the file owner’s group); and “o” designates other (i.e., non-user, non-group permissions). Also, “r” designates read, “w” write, “x” execute, “+” permission addition, and “-” permission removal. The following sample commands illustrate the use of chmod with letter-style arguments:

· chmod u+x a.txt

make a.txt executable by user

· chmod +x a.txt

same command as previous (omitting u/g/o => user permissions)

· chmod +r, +w, -x a.txt
make a.txt readable and writable, but not executable, by user

· chmod ugo+r a.txt

make a.txt readable by all users

· chmod u+rwx a.txt

make a.txt readable, writeable, and executable by user

chmod -r, go-r a.txt

make a.txt readable by everyone but user

· Octal numbers specify permissions. In this format, 0 => no permissions; 1 => execute only; 2 => write only; 3 => execute and write, but not read; 4 => read only; 5 => read and execute, but not write; 6 => read and write, but not execute; and 7 => read, write, and execute permissions. Some examples:

· chmod 700 a.txt
make a.txt readable, writeable, and executable by user

deny permissions to everyone else

· chmod 700 .
same as above, but acts on current (working) directory

· chmod 711 a.txt
make a.txt readable, writeable, and executable by user

make a.txt executable, but neither readable nor writeable, by everyone else

· chmod 755 a.txt
make a.txt readable, writeable, and executable by user

make a.txt executable and readable, not writeable, by everyone else

· chmod 644 a.txt
make a.txt readable and writeable, but not executable, by user

make a.txt readable, but not writeable nor executable, by everyone else

A directory entry’s access permissions are initialized when that entry is created. By default, all file permissions are set to 666, and all directories to 777. These default permissions, however, are adjusted with a 3-digit octal value in the user’s environment. This value, known as the umask, is bitwise-nanded with the default permissions to obtain an effective permission. For example,

· an initial umask of 000 causes initial file permissions to be set to (! 000) & 666 = 777 & 666 = 666, and initial directory permissions to (! 000) & 777 = 777 & 777 = 777.

· an initial umask of 022 (default) causes initial file permissions to be set to (! 022) & 666 = 755 & 666 = 644, and initial directory permissions to (! 022) & 777 = 755 & 777 = 755.

· an initial umask of 077 causes initial file permissions to be set to (! 077) & 666 = 700 & 666 = 600, and initial directory permissions to (! 077) & 777 = 700 & 777 = 700.

an initial umask of 777 causes initial file permissions to be set to (! 777) & 666 = 000 & 666 = 000, and initial directory permissions to (! 777) & 777 = 000 & 777 = 000.
The value of the umask is controlled using the UNIX umask command: e.g., executing umask 022 sets the umask to its default value. See umask’s man page for details.
5.3 Link-Based Object Sharing

Background: Linking and the UNIX File System

A UNIX file system can be configured in a way that allows a single, physical file or directory to be accessed from two or more directories. A clear explanation of UNIX’s mechanisms for object sharing—hard and soft linking—begins with a more careful explanation of how directories are organized.
The files, the directories, and the other objects that UNIX directories name exist as collections of blocks, independently of the directories that name them. A UNIX directory is structured as a list of (name, location) pairs, where
· the name part of every pair (foo.txt, myDirectory, etc.) serves as a user-friendly “handle” for
· the location part of every pair, which encodes the physical location of an object in the UNIX file system.
The location part of a pair can encode that object’s location in one of two ways:

· as a hard link to the object’s master inode (index node): i.e., the physical address (inode number) of a disk block (inode) in the current physical file system that serves as an object’s master directory—a table that tracks the other physical disk blocks that comprise a file or a directory.
· as a soft (symbolic) link to the object: a pathname to another directory in the current virtual file system
Hard link manipulation

Hard link creation using ln without options

The option-less form of the UNIX link command, ln, simply creates a new hard link to an existing file system object: a new object is not created.

When a program like nano, cp, or mkdir creates a new file, file creation, very roughly speaking, happens in three stages:

· physical disk blocks for the new object’s content are allocated (set aside), and filled with the required data;

· a master inode is for the new object is allocated, and configured so as to reference the blocks that contain the object’s data; and, finally,
· a (name, inode number) pair is entered into the directory that references the new object.
The hard-link-creating command ln existingpathame newpathname, on the other hand,
· searches the file system for a directory entry of the form (existingpathame , existingpathame’s location);
· uses this entry to locate existingpathame ’s master inode;
· verifies that existingpathame ’s master inode is in the same physical system (i.e., in the current partition) as the directory referenced by newpathname; then
· creates a new entry in the file system of the form (newpathname, existingpathame s inode number).

If existingpathame and newpathname lie in different partitions, the hard linking fails, and returns an error.
Creating a hard link: an example
The following sequence of commands begins with the creation of an empty file named foo.txt, and collection of information on this file. The example uses cat to create the file
, and the ls command’s –i and –l options to display the new file’s inode (6473924464515049) and initial count of hard links (1), respectively.
>cat </dev/null >foo.txt

>ls –li foo.txt

6473924464515049 -rw-r--r-- 1 Administ None 0 Jul 17 10:00 foo.txt
Copying foo.txt to nur.txt now yields a new file system object with one hard link and a different inode:
>cp foo.txt nur.txt

>ls –li foo.txt nur.txt

6473924464515049 -rw-r--r-- 1 Administ None 0 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 0 Jul 17 11:05 nur.txt

Hard-linking bar.txt to foo.txt, on the other hand, yields two references to a common file system object:

>ln foo.txt bar.txt

>ls –li foo.txt nur.txt bar.txt
6473924464515049 -rw-r--r-- 2 Administ None 0 Jul 17 10:00 bar.txt

6473924464515049 -rw-r--r-- 2 Administ None 0 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 0 Jul 17 11:05 nur.txt

Appending
 content to nur.txt has no effect on foo.txt or bar.txt:
>echo test1 >> nur.txt

>ls –li foo.txt nur.txt bar.txt
6473924464515049 -rw-r--r-- 2 Administ None 0 Jul 17 10:00 bar.txt

6473924464515049 -rw-r--r-- 2 Administ None 0 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 6 Jul 17 11:09 nur.txt

>cat nur.txt

test1
Appending content to foo.txt, however, updates the content of bar.txt, and vice-versa:
>echo test2a >> foo.txt

>ls –li foo.txt nur.txt bar.txt
6473924464515049 -rw-r--r-- 2 Administ None 7 Jul 17 10:00 bar.txt

6473924464515049 -rw-r--r-- 2 Administ None 7 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 6 Jul 17 11:09 nur.txt

>cat foo.txt

test2a
>diff –s foo.txt bar.txt
Files foo.txt and bar.txt are identical
>echo test2b >> bar.txt

>ls –li foo.txt nur.txt bar.txt
6473924464515049 -rw-r--r-- 2 Administ None 14 Jul 17 10:00 bar.txt

6473924464515049 -rw-r--r-- 2 Administ None 14 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 6 Jul 17 11:09 nur.txt

>cat bar.txt

test2a

test2b

>diff -s foo.txt bar.txt
Files foo.txt and bar.txt are identical
Undoing hard links: rm vs. unlink
rm is essentially an intelligent version of a more basic UNIX command, unlink. The command unlink pathname removes the pathname entry from its associated directory, without affecting the underlying file system object. The rm pathname command, on the other hand,

· first, unlinks pathname from its associated directory,

· then returns the space occupied by the associated file system object to the UNIX file system’s pool of free disk blocks, if the unlinking operation removed the last file-system-resident link to that object.

Continuing the last example, removing or unlinking bar.txt has the same effect on the sample directory: the entry for bar.txt is deleted, while the reference count for foo.txt drops to 1:

>rm bar.txt
>ls –li foo.txt nur.txt bar.txt
ls: bar.txt: No such file or directory
6473924464515049 -rw-r--r-- 1 Administ None 14 Jul 17 10:00 foo.txt

1688849860433946 -rw-r--r-- 1 Administ None 6 Jul 17 11:09 nur.txt

Executing rm foo.txt would now remove the final directory entry for the file system object at inode 6473924464515049, and return the disk blocks occupied by this object to the UNIX pool of free storage. Executing unlink foo.txt, on the other hand, would simply remove foo.txt from this directory, leaving the file system object at inode 6473924464515049 unreachable from this file system—or by anyone who did not know the file’s inode. These unlinked files can be recovered, however, using UNIX’s fsck utility; see Section 10.6, Managing File System Problems, for details.
Soft link manipulation
Soft link creation using ln –s
The ln –s form of the UNIX link command creates a symbolic, or soft, link between an existing file and a new file. The soft-link-creating command ln –s sourcepathame newpathname

· first checks that newpathname does not exist, then

· creates a new entry in the file system of the form (newpathname, soft link to sourcepathname).

The file system distinguishes between soft and hard links by setting a reserved bit in the link’s directory entry that flags the entry as a symbolic link. The file system’s filename resolution algorithm evaluates this entry dynamically, each time when newpathname is accessed.
Creating a soft link: an example
The following sequence of commands once again begins with the creation of an empty file named foo.txt:
>cat </dev/null >foo.txt

>ls –li foo.txt

6192449487804452 -rw-r--r-- 1 Administ None 0 Jul 17 10:00 foo.txt
Soft-linking bar.txt to foo.txt yields a new, dynamically evaluated reference to the object :

>ln –s foo.txt bar.txt

>ls –li foo.txt bar.txt
6755399441225705 lrwxrwxrwx 1 Administ None 7 Jul 17 19:12 bar.txt -> foo.txt

6192449487804452 -rw-r--r-- 1 Administ None 0 Jul 17 19:10 foo.txt
bar.txt’s status as a soft link to foo.txt is flagged in two ways: with the initial l (link) in the file attributes word (lrwxrwxrwx), and the trailing “-> foo.txt” in the entry’s listing.

While ls can differentiate between foo.txt and bar.txt, most other standard UNIX commands cannot:
>diff -s foo.txt bar.txt

Files foo.txt and bar.txt are identical

>echo test3 >> bar.txt

>cat foo.txt
test3
One other that can, the UNIX backup utility tar (cf. Section 10.6, Managing Backups), supports a switch, h, that directs tar to resolve symbolic links during backup, and to save the dereferenced files.
Undoing soft links

A soft link and the file it dereferences can be deleted independently of one another. Attempting to dereference a dangling symbolic link, however, yields an error message, as does an attempt to dereference a circular link:

>rm foo.txt

>more bar.txt

bar.txt: No such file or directory
>ls bar.txt

bar.txt
>ls –l bar.txt

lrwxrwxrwx 1 Administ None 7 Jul 17 19:12 bar.txt -> foo.txt
>rm bar.txt

>ln –s bar.txt bar.txt

>more bar.txt
bar.txt: Too many symbolic links
>ls bar.txt

bar.txt
>ls –l bar.txt

lrwxrwxrwx 1 Administ None 7 Jul 17 19:12 bar.txt -> foo.txt
The ls checks following the problem more bar.txt commands illustrate the potential for confusion created by missing links, and the potential need for careful detective work to identify a problem’s cause.
5.4 Managing Files and Directories with Problem Names

The UNIX file system’s flexible naming conventions can be a convenience or a grief, depending on a user’s skill with file manipulation. UNIX file system items can contain newlines, backspaces, and nonprinting characters, all of which can obscure a file or directory’s true name. For example, if nano foo.txt returns a “file not found” error when an ls-style directory listing shows

bar.txt

foo.txt

the problem might be a file named fo<^A>o.txt, fot<backspace>o.txt, or even bar.txt<newline>foo.txt. In this last case, an embedded newline gives the appearance of two files where only one is present.

A standard strategy for managing file system items with strange names is to identify their correct name, and then rename or delete them. Newer versions of ls have options that display each nonprinting character in file name as an octal number, preceded by a backslash. For systems whose ls command lacks this option, piping the output of ls through od, the UNIX octal dump program,

>ls | od –c

is a second technique for discovering invisible characters.

Renaming and/or deleting a directory entry with a strange name is a little tricky. Most command interpreters support escape sequences that allow a nonprinting character’s ASCII code to be used instead of that character:

rm fo\001o.txt

death to fo<^A>o.txt !

If the strange name is different enough from other names in the directory, it may be possible to use filename wildcard characters like ? (any one character) or * (any sequence of characters) to fix the problem:

mv bar.txt?foo.txt foo.txt
give bar.txt\nfoo.txt a more manageable name
A final name problem involves using rm to remove files whose names start with hyphens. Commands like

rm –file1 file2

[wrong] attempt to delete files –file1 and file2
rm file2 –file1

[also wrong] attempt to delete files file2 and –file1

fail to remove –file1: rm treats –file1 as an (unknown) option, rather than a file to delete. What is needed instead is an extra, double hyphen in front of –file1:

rm -- –file1 file2

[correct] deletes files –file1 and file2
rm file2 -- –file1

[also correct] deletes files file2 and –file1
6. Managing UNIX Command Execution
A shell, or command interpreter, is a program that executes user commands. Depending on the shell, these commands may include spoken commands, cursor movements, or other commands given in a visual programming language like Labview. The term, however, is most commonly associated with command-line-oriented command interpreters, and will be used in this sense throughout this document.

Many operating systems, including MS/DOS and its descendants, have historically supported one standard shell. UNIX supports many, each with its own features. Widely used shells for UNIX environments include

· sh - the original AT&T shell language

· csh - the "sea shell", distributed with the U. of Berkeley's UNIX

· ksh - the Korn shell, written by a person named Korn

· bsh - the Bourne shell, written by an individual named Bourne

bash - the "Bourne again" shell, an improved Bourne shell.

For simplicity, this primer focuses primarily on bash. Reasons for this focus include Linux’s use of bash as its default shell, and bash’s range of functionality, which includes a programming-language-like range of control and data structures; interactive up-arrow/down-arrow command recall; and interactive scripting.

This balance of this chapter discusses six common sets of mechanisms for managing UNIX command execution—again, with special attention to bash:
· Environment variables.

· Mechanisms for establishing what files are executed in response to user-specified commands.
· Mechanisms for recalling and re-executing previously executed commands

· Commands for managing (redirecting) command input and output (to files and other commands)

· UNIX job control commands

· UNIX task control commands

6.1 Recalling and Reusing Past Commands

Most shells also support a history function: a database of recently executed commands that a user can query and reexecute. In bash, this command history is stored, by default, in a file in the user’s home directory named .bash_history. bash’s history built-in shows all commands in a user’s history, up to the user-specified limit. To limit the display to the last n lines, use history n instead, like so:

>history 5

37 vi .bash_history

38 man history

39 bash

40 man bash

41 history 5

In bash, a previously executed command can be recalled by scrolling through them at the command prompt, using up-arrow and down-arrow to scroll to older and newer commands, respectively. Recalled commands can then be edited, if desired, then executed by moving the cursor to the line’s end, and hitting enter.

Commands can also be recalled using !. A command like !foo reexecutes the last command that began with the string “foo”. Alternative forms of the ! built-in include !!, which reexecutes the previous command; !nn , which executes the command numbered nn; and !-nn, which executes the nnth most recently executed command.
6.2 Environment Variables

An environment variable is a named value—typically, a string—that can be accessed, and possibly updated, using special shell syntax. Shells typically accord special significance to variables with certain names. The following, for example, is a list of selected bash environment variables with special meanings:
	variable
	meaning
	
	variable
	meaning

	COLUMNS
	num. columns in current window’s display
	
	HISTFILE
	name of history file for current user (cf. §6.1)

	LINES
	num. lines in current window’s display
	
	HISTFILESIZE
	number of lines, max, in history file (cf. §6.1)

	
	
	
	HISTSIZE
	number of commands to remember (cf. §6.1)

	HOME
	current user’s home directory
	
	
	

	PWD
	current user’s working directory
	
	PS1
	value of string expanded, used as primary prompt

	
	
	
	PS2
	value of secondary prompt (e.g., line continuation)

	PATH
	list of directories for resolving commands (cf. §6.3)
	
	
	

	
	
	
	
	

	IFS
	list of separators used to parse command lines:
by default, space, tab, newline
	
	MANPATH
	list of directories for resolving man command manual page lookups

	
	
	
	
	

	HOSTNAME
	name of current host
	
	RANDOM
	a random number between 0 and 32767

The bash logic for interpreting the PS1 string supports special interpretations for selected escape sequences. The following is a partial list of these sequences:
	seq.
	meaning
	
	seq.
	meaning

	\d
	date in “weekday month date” format
	
	\u
	current user’s user name

	\h
	hostname, up to first “.”
	
	\w
	current (working) directory

	\H
	full hostname
	
	\W
	basename of current working directory

	\l
	basename of shell’s terminal driver (e.g., tty0)
	
	\!
	history number of current command (cf. §6.1)

	\n
	newline
	
	\#
	command number of current command

	\t
	current time in 24 hr HH:MM:SS format
	
	\T
	current time in 12 hr HH:MM:SS format

	\A
	current time in 24 hr HH:MM format
	
	\@
	current time in 12 hr am/pm format

For example, executing a command of the form

PS1="\w <\!>"

yields a prompt that consists of the current working directory, followed by the number of the current command, as it will appear in the user’s history file. (For more on bash variable manipulation, see Variables, in Section 8.2, An Introduction to the bash Scripting Language.)
A complete list of bash’s built-in variables can be obtained from the bash man page, as well as more information on bash prompting.
6.3 Resolving Command Names

UNIX shells, as a rule, use a three-part algorithm for determining how to interpret a request to execute a command:

· The shell first checks if the command string contains /, a character that is allowed only in UNIX pathnames. If so, the command string is treated as the name of a file that corresponds to a program, and is used as a starting point for building the command.

· Otherwise, the shell checks whether the command string is a built-in: a command that the shell can interpret on its own, without recourse to any other system files. The jobs and history commands, for example, which are discussed later in this chapter, are both built-ins.
· Finally, the shell treats the command string as the name of an executable file, and uses an environment variable known as a path variable to resolve the file name. This path variable directory—in bash, PATH—specifies a list of directories that might hold a file that implements the desired command. The directories are searched in order, and checked for executable files whose names correspond to the specified command. If no such file exists, the command is treated as an undefined command, and fails.

Given, for example, the following value of PATH,

/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin
bash interprets the print in a command like
print usr/foo
as either

an executable file named /usr/local/bin/print,
if this file exists; otherwise,

an executable file named /usr/bin/print,

if this file exists; otherwise,

an executable file named /bin/print,

if this file exists; otherwise,

an executable file named /usr/X11R6/bin/print,
if this file exists; otherwise,
as an unknown command.

A PATH variable can be extended using standard bash syntax for accessing and updating variables. For example, a command of the form
PATH="$PATH:."

adds the working directory to the list of directories searched for commands. Putting . in a user’s path variable, however, is regarded as unwise, since it allows unwary users to be tricked into (1) changing into a directory that they haven’t fully explored, and (2) executing commands they would not otherwise choose to execute. The situation is particularly treacherous when . is placed at the beginning of a path variable, which causes it to be searched ahead of standard system directories: a clever attacker can, for example, substitute his or her own version of ls for the system’s version of ls, and use the Trojan-horse ls to gain access to the victim’s password.
A useful tool for resolving doubts about which version of a command will execute is which. The which command, when executed, takes one parameter: the name of a potential command. which returns the complete pathname for the indicated command, if the command resolves to an executable file:

>which which

/usr/bin/which

Otherwise, which returns the error message “Command not found”. This message, for example. is commonly returned when trying to resolve the pathname for built-ins:
>which history
history: Command not found.

For more on bash variable manipulation, see Variables, in Section 8.2, An Introduction to the bash Scripting Language.

6.4 Command Line I/O: Streams, Redirection, and Pipes
streams, stdin, stdout, stderr, and redirectio

A stream is a file-like object—often, a file—that supplies input, or receives output, from a user’s program. Conventional UNIX programs and commands process i/o from three standard streams:

· stdin (“standard input”):
 programs receive input from stdin

(C++ users: think cin)

· stdout (“standard output”):
 programs send output to stdout

(C++ users: think cout)

stderr (“standard error”):
 programs send error messages to stderr
(C++ users: think cerr)
Data from the standard input stream is normally obtained from the keyboard. Data for the standard output and standard error streams is normally written to the current window. Standard UNIX command interpreters, however, allow these defaults to be changed (redirected) at the time when a command is entered. The three de facto standard redirection operators—the ones separated by typical UNIX shells—are < (redirect input), > (redirect output to start of stream), and >> (redirect output, appending to stream):
· < directs a command to take its input from the stream whose name follows the <. For example, the “<foo.txt” in cat <foo.txt directs cat to read foo.txt (and write it to the standard output).
· > directs a command to write its output to the start of the stream whose name follows the >, and to delete the stream’s current contents, if it already exists. For example, the “>dir.txt” in ls /usr/local > dir.txt directs ls to write the listing of directory /usr/local into dir.txt, possibly replacing the current dir.txt.
Since output redirection (‘>’) is a potentially dangerous operation, some UNIX command interpreters support safeguards against the accidental overwriting of files:
· The C Shell (csh), by default, refuses to execute a command that would overwrite an existing file. This policy can be disabled with unset noclobber, then reenabled with set noclobber.
· The bash shell (bash), by default, allows > to overwrite existing files. In bash, noclobber can be enabled with set +o noclobber, and disabled with set –o noclobber.
>> directs a command that ordinarily sends its output to the screen to append its output to a file instead, creating this file if it does not already exist. For example, the “>> dir.txt” in ls /usr/local >> dir.txt appends a listing of directory /usr/local to file dir.txt, possibly creating dir.txt.
Input and output redirection may be used together in a single command. Try, for example, the following sequence of commands:

ls /usr/local > temp.txt

sort –n –k5,5 < temp.txt > files.txt
more files.txt
The final more command should show the contents of /usr/local, sorted by file size. (Note: See Chapter 7, Unix Filters, for a description of sort).
The syntax for redirecting stderr is less standardized. bash, the shell highlighted in this document (see Chapter 8, bash), supports a redirection operator, >&, that redirect stderr and stdout to the specified file. The following exercise illustrates the use of >&:

>rm –f foo bar
ensures that attempts to list foo generate errors
>ls foo > bar

ls: foo: no such file or directory

>rm bar

>ls foo >& bar

>cat bar

ls: foo: no such file or directory

As a final note on redirection, bash subshells can be used to redirect stdout to one file and stderr to a second. See the subshells section in Section 8.3, An Introduction to the Bash Scripting Language, for details.
Pipes

The stdin, stdout, and stderr streams can also be manipulated using a command-linking operator known as a pipe. Pipes pass the standard output of one command to the standard input of a second, eliminating the need for temporary files. For example, the three-command sequence shown above
ls /usr/local > temp.txt

sort –n –k5,5 < temp.txt > files.txt

more files.txt
can be replaced with the single, pipe-based command
ls ‑l /usr/local | sort –n –k5,5
The | operator in the command above directs UNIX to pass the output from ls –l /usr to sort –n –k5,5 , which then sorts the stream by file size.

A single command line may contain multiple pipe operators. For example, the command

ls ‑l /usr/local | sort –n –k5,5 | more
produces a listing of /usr/local, sorts this listing, and displays it, interactively, on the user's terminal.

6.5 Managing Job Execution

About jobs

A job is a collection of programs that runs in response to a user's command line. A command like

ls ‑l /usr

for example, invokes a single job that runs a single process. So does a command like

ls ‑l /usr/local | sort +3n | more
which invokes a job with three processes.
UNIX allows a single session window to be used to activate two or more jobs at the same time. A second job can be activated when another job is already running first suspending (stopping) that first job, as follows:

· Enter ^Z (control-Z) to suspend the currently command, and return to the command line interpreter.

Enter the new command at the prompt; let it run to completion; then reactivate the previous job by entering the fg (foreground) command.

A pair of jobs can also be run concurrently, in the following two ways:

· If one job is already active, then a second job can be activated by
· entering ^Z to suspend the current job, and return to the UNIX command line interpreter;
· entering the bg command, which causes this first job to run in the 'background' (i.e., without direct access to keyboard input); then
· entering the second command at the prompt.

· If no job is currently running, the user can proceed as follows:

· entering a first command followed by &, which runs the first command as a 'background' job, then
entering a second command at the prompt.

The following describes selected UNIX job control commands in more detail. .

Basic UNIX job control commands
Suspending and resuming the current job (^Z, fg)
Occasionally a user may want to pause in the middle of a task (say, an edit session) to do other tasks (say, check the date) and then return to the first. In UNIX, a currently executing job can be suspended by typing ^Z. That job can later be resumed from where it was stopped, using fg.
fg is short for “foreground”. A foreground job, roughly speaking, is the unique job that is currently accepting input from the session’s master keyboard. Every window can have at most one foreground job. A background job is any non-foreground job: any job, that is, that cannot currently accept input from the session’s keyboard.

Killing the last suspended job
The command kill % terminates the most recently suspended job. kill is discussed at length below.
Restarting suspended jobs in the background (bg)
A suspended (^Z) job is also stopped: it does no further work until reactivated. A stopped job can be reactivated by returning it to the foreground, using fg. There are also situations where it would be better for a background job to run in the background: e.g., to allow a download to progress while a user edits a file in the foreground. The bg command directs UNIX to continue running the most recently suspended job in the background, while returning control of the session keyboard to the command line interpreter.

Once a stopped job has been restarted as a background job, one of four things can happen to that job:

· The job finishes. UNIX prints a 'done' message in the current window whenever this happens.

· The job is restored to the foreground with fg, and continues to run.

· The job is killed.

The job requests input from the keyboard. It will then be resuspended, and remain stopped until restored to the foreground or killed.
More UNIX job control commands

Starting jobs in the background (&)
Ending a command line with & causes the job to start running in the background. UNIX returns a command prompt immediately, thereby allowing the user to issue another command.

Listing active jobs (jobs)
jobs returns the job number and status of every job that is currently running in the background. The following is a sample output from jobs:

[1] + Suspended nano tutor.job_control

[2] Running xman

[4] – Suspended (tty input) sort

This output shows that the user has three background jobs:

· job number 1 is a nano edit session;

· job number 2 is the visual version of the UNIX man program, xman; and

job number 4 is the UNIX sort utility.

Only job 2, the xman job, is currently making headway. Job 1, the nano job, is simply suspended; the remaining job, the sort job, is waiting for input on stdin.

Resuming suspended jobs (fg) – a more detailed discussion
fg, when executed with no arguments, activates the one (and only) job that has a “+” next to it in the listing from jobs: typically, the last or the second‑to‑last job pushed into the background. In the earlier jobs example fg would activate job 1—the nano job.

fg, when used with an argument of the form “%number”, activates the job with the specified number. In the earlier jobs example, entering fg %1, fg %2, and fg %4 would activate the nano, xman, and sort jobs, respectively. (Entering fg %3 would generate an error message.)
Terminating executing jobs (kill)
The somewhat misnamed kill command sends a signal to a UNIX process. A signal is a typed event notification that, in UNIX, is often connected with some sort of problem: e.g., an abort request, a bus error, a virtual memory error (segment violation). UNIX allows programs to include blocks of logic, known as signal handlers that respond to signals in whatever way a programmer sees fit. Most programs, however, don’t define handlers for most signals—and any failure to handle any signal causes a program to terminate.

Hence, the name “kill”.

A user can specify a process to kill in one of two ways: by job number (as returned by jobs), or by process ID (as returned by ps, a utility described below). Arguments to kill that represent job numbers should be preceded by percentage signs; process IDs should be entered as is. In the earlier jobs example, entering kill %1, kill %2, and kill %4 would signal, and presumably kill, the nano, xman, and sort jobs, respectively.
Normally, programs are compiled with support routines that catch otherwise-uncaught signals on a program’s behalf, in an effort to gracefully close a program’s streams before forcing it to terminate. Unfortunately, sometimes this attempt to terminate programs gracefully causes a program to hang. Using

kill –9 %n
to kill job n (or “kill –9 n” for process n) bypasses any built-in mechanisms for graceful termination, sending the specified process to its doom immediately. Here, the “–9” is the code number for “sigkill”, the one signal that no UNIX process is allowed to handle. See kill’s manual page for details.

6.6 Accessing Task Status
Jobs are made up of tasks, which are also known as processes: separate instances of running programs. UNIX’s process status (ps) command returns information on a system’s active processes, in a form that depends on the arguments with which ps is called.
ps, when called without arguments, returns status information on all “interesting” tasks activated in the current window. The following is an example of a display returned by ps:

PID
TTY
TIME
CMD

5826
ttyq0
0:00
csh

6003
ttyq0
0:00
ps

6005
ttyq0
0:00
cat

6007
ttyq0
0:00
more

The listing in this example shows four “interesting” tasks. The PID (process ID) column shows the unique process identifier that UNIX assigned to each task. The TTY column shows the console terminal with which the task is associated: ttyq0 is probably a pseudo-terminal associated with the user’s keyboard. The TIME command shows the amount of CPU time each task has consumed. Finally, the CMD column shows the command line used to invoke each task.

The first task, csh, is the command processor associated with the user’s session—here, the C Shell.

A second form of the ps command, ps –a, returns the status of “interesting” user jobs on the current machine—regardless of activation window. Yet another system-dependent form of ps returns the status of all executing jobs. These listings can be important for finding and killing out-of-control processes.

7. Filters: An Overview
7.1 Introduction

Filters as Tools for Massaging Output
The UNIX environment has a rich set of report generation programs. These include commands that generate information on aspects of system and network operation, like
· ps, which returns information about a system’s active jobs and tasks (processes);
· netstat, which returns information about a system’s active communication channels, together with statistics about network usage;

· whois, which returns information about organizations that have registered Internet names and addresses;

· arp, which returns information about a system’s routing tables; and
nslookup, which returns information about local and Internet configuration, obtained from computers that store this information.
If these programs have a limitation, it’s a lack of support for fully flexible output. These programs’ outputs must often be collated, and/or condensed, and/or excerpted, and/or summarized, and/or reformatted, to obtain a finished report. The decision to keep UNIX report output simple was deliberate (cf. Software Tools, P.J. Plauger). UNIX’s designers thought it impractical to develop all-in-one reporting programs, seeking instead to develop a set of programs for incrementally transforming data into finished reports.
These programs became known as filters. A filter is a program that
· receives input from the standard input (stdin), typically as text;
· transforms that output, according to a parameterized set of user guidelines; and, finally,
writes that output to the standard output (stdout), possibly to another filter.
Ten Key UNIX Filters

This chapter describes ten representative UNIX filters:
· head – returns a file’s first n lines.

· tail – returns a file’s last n lines.

· cut – cuts selected columns/fields from source data, writing cut columns to stdout.

· paste – “horizontally splices” lines from multiple files, mapping each file to a single column in the output.
· wc – counts the number of characters, words, and lines in a file. wc is often used to process output from other filters to count the number of lines in an initial file that satisfy, or fail to satisfy, a set of constraints.

· tr – transliterates or deletes characters from a file.
· sort – combines and sorts lines from all files named, writing the result to stdout. Command line options control the selection of field separators (default: ' ') and key fields (default: by order of fields in key).

· uniq – reads an input stream, comparing adjacent lines. uniq, by default, removes the second and succeeding copies of repeated lines; the remaining lines are written to stdout. Typically used with sort.

· grep – short for "Get Regular Expression and Print". grep searches an input stream, selecting lines that match one or more user-specified patterns.

· awk – a utility that combines a line-by-line text editor with a simple programming language. awk accepts a list of (pattern, command list) pairs, and an input stream, and scans every line in the stream,

· parsing that line into fields (default separator: ' '), and

checking whether the line matches any of the patterns in the list of (pattern, command list) pairs.

When a line matches, the command list associated with the first matching pattern is executed. Typical commands output a subset of the fields in the matched line, possibly reordering these fields.
These ten filters, to the best of this author’s knowledge, have been in UNIX distributions since the 1970’s. All ten are still in common use, except awk, which has been supplanted by perl, a newer language created as a better awk (cf. www.perl.org). Reasons for presenting awk instead of perl include awk’s relative simplicity; perl’s complexity; and the perception that knowing awk helps with learning perl.
Sample Data Files for Demonstrating Filters
This chapter uses the following three datasets to illustrate the operation of these ten programs:
The first, 1965-#1s.txt, is the following list of Billboard #1 Hit Songs from 1965 (source: Bronson, The Billboard Book of Number One Hits, 3rd Edition):
	I Feel Fine:The Beatles:Lennon, McCartney:Martin:2:1:2:Capitol

	Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

	You’ve Lost that Lovin’ Feelin’:Righteous Brothers:Spector, Mann, Weil:Spector:6:2:2:Phillips

	This Diamond Ring:Gary Lewis and the Playboys:Kooper, Brass, Levine:Garrett:20:2:2:Liberty

	My Girl:The Temptations:Robinson, White:Robinson, White:6:3:1:Gordy

	Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

	Stop! In the Name Of Love:The Supremes:Holland, Dozier, Holland:Holland, Dozier:27:3:2:Motown

	I’m Telling You Now:Freddie and the Dreamers:Garrity, Murray:Burgess:10:4:2:Tower

	Game of Love:Wayne Fontana and the Mindbenders:Ballard:Unknown:24:4:1:Fontana

	Mrs. Brown You’ve Got a Lovely Daughter:Herman’s Hermits:Peacock:Most:1:5:3:MGM

	Ticket to Ride:The Beatles:Lennon, McCartney:Martin:22:5:1:Capitol

	Help Me Rhonda:The Beach Boys:Wilson:Wilson:29:5:2:Capitol

	Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

	(Sugar Pie Honey Bunch) I Can’t Help Myself:The Four Tops:Holland, Dozier, Holland:Holland, Dozier, Holland:19:6:2:Motown

	Mr. Tambourine Man:The Byrds:Dylan:Melcher:26:6:1:Columbia

	(I Can’t Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

	I’m Henry VIII, I Am:Herman’s Hermits:Murray, Weston:Most:7:8:1:MGM

	I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco

	Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

	Eve of Destruction:Barry McGuire:Sloan:Sloan, Barri:23:9:1:Dunhill

	Hang on Sloopy:The McCoys:Russell, Farrell:Feldman, Goldstein, Gottehrer:2:10:1:Bang

	Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol

	Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London

	I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown

	Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia

	Over and Over:The Dave Clark Five:Byrd:Clark:25:12:1:Epic

This table’s eight colon-separated columns give the song’s title, artist, authors, producers, initial week at #1 (day/month), # weeks at #1, and record label, respectively.

The second, etsu.edu.dns.txt, is a zone-dump-like characterization of ETSU’s network configuration. The file was obtained by using nslookup to dump ETSU’s network configuration, then reformatting irregular records to make the file easier to process. The following is a fragment of the resulting file:

	etsu.edu.
IN
SOA
jcdc2.etsu.edu.
whitet.etsu.edu.
211052
900
600
86400
3600

	etsu.edu.
NS
jcdc3.etsu.edu.

	etsu.edu.
NS
dns112.etsu.edu.

	etsu.edu.
NS
jcdc2.etsu.edu.

	etsu.edu.
NS
ns1.tec.net.

	etsu.edu.
NS
jcdc1.etsu.edu.

	etsu.edu.
NS
wrlnames.etsu.edu.

	etsu.edu.
600
A
151.141.8.100

	etsu.edu.
600
A
151.141.8.110

	etsu.edu.
600
A
151.141.8.101

	etsu.edu.
600
A
151.141.4.7

	etsu.edu.
MX
10
smtp.etsu.edu.

	000C41B01BAF
900
A
151.141.64.146

	002078cb3205
900
A
151.141.55.103

	0805541
900
A
151.141.65.139

	081160
900
A
151.141.77.164

	1wv0y01
900
A
151.141.59.190

	207WWH
900
A
151.141.48.67

	212wwh05
900
A
151.141.48.194

	212wwh06
900
A
151.141.48.144

	212wwh07
900
A
151.141.48.67

	212wwh08
900
A
151.141.48.116

	212wwh09
900
A
151.141.48.237

	3q5n10b
900
A
151.141.41.110

	4rij6
900
A
151.141.55.154

	6tndd
900
A
151.141.65.125

	78007
900
A
151.141.65.107

	78489
900
A
151.141.60.210

	7x21b01
900
A
151.141.85.217

	80526
900
A
151.141.65.155

	84513etsu
1200
A
151.141.55.126

	84574
TXT
"swip://151.141.65.35/"

Each of this file’s lines (records) consists of a sequence of tab-separated strings (fields). Each record contains a type code: here, either SOA (start of authority), NS (name server), A (address), or TXT (text). The content of the remaining fields varies according to the record’s type. ETSU’s zone dump 5,094 entries as of mid-June 2004.
· The third, A-records.txt, consists of normalized address (“A”) records extracted from etsu.edu.dns.txt. Standard A records can be formatted in one of four ways:
· as a three-record field, that consists of a DNS name, the “A” record type indicator, and the DNS name’s associated IP address;

· as a four-record field, that consists of a DNS name, a network type indicator (typically IN), the “A” record type indicator, and an IP address;

· as a four-record field, that consists of a DNS name, a timeout value, the “A” record type indicator, and an IP address; or

as a five-record field, that consists of a DNS name, a network type indicator (typically IN), a timeout value, the “A” record type indicator, and an IP address.

A-records.txt was created by first extracting all A records from etsu.edu.dns.txt, then adding empty fields, where appropriate, to expand short records to five fields. The following is a representative fragment of A-records.txt:
	bdh-3600-ml264

86400
A
151.141.2.65

	bdh-5500

86400
A
151.141.100.11

	bdh-6500

A
151.141.100.5

	bdh-asp

86400
A
151.141.100.31

	bdh-cdf-2950-lre

A
151.141.42.7

	bdh-cdf-2950g

A
151.141.86.21

A full description of nslookup, zone dumps, and the procedures for creating etsu.edu.dns.txt and A-records.txt are given in Appendix D.
7.2 head
head returns the initial “so many” lines of a file. head, if invoked without an argument, returns the first ten lines of a file; for example, the first ten top #1 songs for 1965:
> head 1965-#1s.txt

I Feel Fine:The Beatles:Lennon, McCartney:Martin:2:1:2:Capitol
Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers
You've Lost that Lovin' Feelin':Righteous Brothers:Spector, Mann, Weil:Spector:6:2:2:Phillips
This Diamond Ring:Gary Lewis and the Playboys:Kooper, Brass, Levine:Garrett:20:2:2:Liberty
My Girl:The Temptations:Robinson, White:Robinson, White:6:3:1:Gordy
Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol
Stop! In the Name Of Love:The Supremes:Holland, Dozier, Holland:Holland, Dozier:27:3:2:Motown
I'm Telling You Now:Freddie and the Dreamers:Garrity, Murray:Burgess:10:4:2:Tower
Game of Love:Wayne Fontana and the Mindbenders:Ballard:Unknown:24:4:1:Fontana
Mrs. Brown You've Got a Lovely Daughter:Herman's Hermits:Peacock:Most:1:5:3:MGM
The classic version of head, when supplied with an argument of the form -nn (nn a positive integer), returns the file’s first nn lines. Some newer implementations require an explicit flag, as shown below:
> head –n 3 etsu.edu.dns.txt
etsu.edu.
IN
SOA
jcdc2.etsu.edu.
whitet.etsu.edu.
211052
900
600
86400
3600
etsu.edu.
NS
jcdc3.etsu.edu.

etsu.edu.
NS
dns112.etsu.edu.
Newer versions of head also support an option that returns the first n bytes (in addition to the first n lines).

head is often used with tail to extract a block of lines from the middle of a file (see below).

7.3 tail
tail returns the final “so many” lines of a file. tail, without an argument, returns the final 10 lines of a file; for example, the last top #1 singles for 1965:

> tail 1965-#1s.txt

I'm Henry VIII, I Am:Herman's Hermits:Murray, Weston:Most:7:8:1:MGM
I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco
Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol
Eve of Destruction:Barry McGuire:Sloan:Sloan, Barri:23:9:1:Dunhill
Hang on Sloopy:The McCoys:Russell, Farrell:Feldman, Goldstein, Gottehrer:2:10:1:Bang
Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol
Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London
I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown
Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia
Over and Over:The Dave Clark Five:Byrd:Clark:25:12:1:Epic
The classic version of tail, when supplied with an argument of the form +nn (nn a positive integer), returns the file’s final nn lines. Some newer implementations require an explicit flag, as shown below:

> tail –n 5 etsu.edu.dns.txt

yuan
900
A
151.141.31.78

zephy
86400
A
151.141.30.48

zkem5
900
A
151.141.113.141

ZouLab
900
A
151.141.59.58

ZPEP1
900
A
151.141.26.157

Newer versions of tail also support an option that returns the final n bytes (in addition to the final n lines).
tail is often used with head to extract lines from the middle of a file. The following examples show two ways of extracting lines 17-18 from 1965-#1s.txt, which contain data on Billboard #1 songs for July, 1965:

> head –n 17 1965-#1s.txt | tail –n 2

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

I'm Henry VIII, I Am:Herman's Hermits:Murray, Weston:Most:7:8:1:MGM

> tail –n 12 1965-#1s.txt | head –n 2
(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

I'm Henry VIII, I Am:Herman's Hermits:Murray, Weston:Most:7:8:1:MGM
7.4 cut
The classic version of cut allows a user to extract content from a file, based on a view of that file as a two-dimensional table. This table’s rows, by default, are equated with a file’s lines. This table’s columns are computed from a file’s lines by dividing every line into a series of fields, using either field separators or character positions:
· Field separators. The field separator strategy for dividing lines into columns uses a special character that is treated as an inter-column marker, and not as a part of the input itself. All characters to the left of the first field separator on every line are treated as fields in column 1; all characters between the first and second field separators as fields in column 2; and so on.

Character positions. The character position strategy uses a character’s position on a line to determine its column. The leftmost character on every line, for example, is in column 1; the next character over, in column 2; and so on.

cut’s command-line arguments allow its users to specify which of these strategies to use to identify columns, as well as which columns to include in the output—and, implicitly, which columns to delete.
Using field separators to identify columns. At one time, the field separator strategy was cut’s default strategy for identifying columns. Newer implementations require the –f flag when field separators are in use:
> tail –n 5 etsu.edu.dns.txt | cut –f 1,4

yuan
151.141.31.78

zephy
151.141.30.48

zkem5
151.141.113.141

ZouLab
151.141.59.58

ZPEP1
151.141.26.157

This first example retrieves two non-adjacent columns (1, 4) from a data file that uses cut's default field separator, tab, to delimit columns. Different field separators can be accommodated using the –d option, and ranges of columns with hyphenated ranges:

> head –n 5 1965-#1s.txt | cut –d: –f 1-3,8
I Feel Fine:The Beatles:Lennon, McCartney:Capitol
Downtown:Petula Clark:Hatch:Warner Brothers
You've Lost that Lovin' Feelin':Righteous Brothers:Spector, Mann, Weil:Phillips
This Diamond Ring:Gary Lewis and the Playboys:Kooper, Brass, Levine:Liberty
My Girl:The Temptations:Robinson, White:Gordy
Using character positions to identify columns. The character position strategy works best for programs that position output in fixed columns, ps. The following, for example, uses the –c option to condense the output of a ps command run under cygwin, a freeware UNIX emulator for Windows:

>ps
 PID PPID PGID WINPID TTY UID STIME COMMAND

 716 1 716 716 con 500 Jun 11 /bin/bash
 3516 716 3516 2596 con 500 13:54:01 /usr/bin/ps
>ps | cut –c 1-10,48-
 PID STIME COMMAND

 716 Jun 11 /bin/bash
 3516 13:54:01 /usr/bin/ps
Note, once again, the use of field ranges to retrieve sets of columns. Note also the use of a final, dangling hyphen to specify all columns to the right of column 48.

Treating files as one-dimensional vectors. In some implementations of cut, specifying a newline (‘\n’) as a column delimiter causes cut to treat the whole file as single record, and the –f option to select entire lines from the input:
> cut –d$'\n' –f 18,20 1965-#1s.txt
I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco

Eve of Destruction:Barry McGuire:Sloan:Sloan, Barri:23:9:1:Dunhill
Newer versions of cut add a third, –b option that treats a file as a one-dimensional vector of bytes, extracting the specified bytes from that file. The FSF cut also has an –output-delimiter option for specifying the field marker in the output (default: same as the input delimiter).

Limitations. cut cannot be used to reorder or replicate fields. cut –f 4,1, for example, yields the same result as cut –f 1,4. cut –f 1,1 generates an error.
7.5 paste
paste builds an output file by combining content from a list of input files. Input is combined “horizontally”: line n of the output is created by concatenating line n from each input, in the order in which those files appear. For example, the following sequence of commands reverses the order of the fields in the list of 1965 top songs:
> cut –d: –f 1 1965-#1s.txt > 1.txt
> cut –d: –f 2 1965-#1s.txt > 2.txt

> cut –d: –f 3 1965-#1s.txt > 3.txt

> cut –d: –f 4 1965-#1s.txt > 4.txt

> cut –d: –f 5 1965-#1s.txt > 5.txt

> cut –d: –f 6 1965-#1s.txt > 6.txt

> cut –d: –f 7 1965-#1s.txt > 7.txt

> cut –d: –f 8 1965-#1s.txt > 8.txt
> paste –d: 8.txt 7.txt 6.txt 5.txt 4.txt 3.txt 2.txt 1.txt | head –n 5
Capitol:2:1:2:Martin:Lennon, McCartney:The Beatles:I Feel Fine

Warner Brothers:2:1:23:Hatch:Hatch:Petula Clark:Downtown

Phillips:2:2:6:Spector:Spector, Mann, Weil:Righteous Brothers:You've Lost that Lovin' Feelin'

Liberty:2:2:20:Garrett:Kooper, Brass, Levine:Gary Lewis and the Playboys:This Diamond Ring

Gordy:1:3:6:Robinson, White:Robinson, White:The Temptations:My Girl
The –d: option directs paste to use a colon as a field separator, instead of the default, tab.
7.6 wc
The classic implementation of the so-called word count utility, wc, returns the number of lines (-l) , words (‑w), and/or characters (-c) in the specified input, according to the form of the input, and the switches in use:
· If one input source is specified, wc returns a single line, according to the following guidelines:

· When exactly one option is specified, wc displays the requested value, preceded by a tab.

· When more than one option is specified, wc displays each of the requested values, preceded by a tab. The order in which the counts are displayed is fixed, regardless of the order in which the options are given: first lines (if requested), then words (if requested), then characters (if requested).
· The name of the input file, if specified, is displayed after all counts, preceded by a tab. Otherwise, if input is taken from the standard input, nothing is displayed.
If two or more input files are specified, wc returns one line for each input file, in the order specified, followed by a final summary line. Each line is formatted according to the rules given above.

Specifying no switches is equivalent to specifying words, lines, and characters.
The following examples show uses of wc to obtain the number of lines and words in the songwriters column of 1965-#1s.txt:

>cut –d: –f 3 1965-#1s.txt > songwriters.txt

>wc –w songwriters.txt

49
songwriters.txt
>wc –l songwriters.txt

27
songwriters.txt
>wc –l –w songwriters.txt

27
49
songwriters.txt
>wc –w –l songwriters.txt

27
49
songwriters.txt
> wc –l <songwriters.txt

27
The counts that wc returns can provide useful characterizations of a source dataset. Here, for example, the second command shows that there were 27 #1 hit songs during 1965. Similarly, counting the number of A records in etsu.edu.dns.txt yields an upper bound on the number of computers in the etsu.edu domain with direct access to the Internet:
>grep $'\tA\t' etsu.edu.dns.txt | wc –l

4852
This example uses the grep pattern-matching utility, which is discussed below, to select lines from etsu.edu.dns.txt that contain tab-capital A-tab: i.e., that declare names for Internet addresses.
Output from wc is also processed to obtain other statistics. This processing often involves finding the average number of words per line, characters per word, or characters per line. The command below, for example, computes the average number of authors per number #1 song for 1965:
>echo `wc –w <songwriters.txt`/`wc –l <songwriters.txt` | bc –l
1.81481481481481481481
The following is a more intuitive, expression-by-expression breakdown of this command’s operation:
· The expression `wc –w <songwriters.txt` directs bash to

· first execute the command wc –w <songwriters.txt,

· then to substitute that command’s output into the current point in the current command.
Since every songwriter is represented by a single last name, this count of words in songwriters.txt is equal to the total number of songwriters for #1 songs in 1965-#1s.txt: 49.
· The expression `wc –l <songwriters.txt` directs bash to

· first execute the command wc –l <songwriters.txt,

· then to substitute that command’s output into the current point in the current command.

Since every song occupies one line, this count of words in songwriters.txt is equal to the total number of #1 songs in 1965-#1s.txt: 27.
· The expression `wc –w <songwriters.txt`/`wc –l <songwriters.txt` therefore evaluates to “47/29”.

The expression echo `wc –w <songwriters.txt`/`wc –l <songwriters.txt` passes the string “47/29” to the UNIX desk calculator program bc, which uses decimal arithmetic (the –l switch in bc –l) to compute the quotient 1.8148148...
Newer versions of wc use –m for character counts and –c for a fourth, byte-count option.
7.7 tr
tr, like wc, is a multi-purpose program. Depending on how tr is invoked, the program either

· transliterates (–t) all occurrences of a set of user-specified characters, on a character-for-character basis, or

· deletes (–d) all occurrences of user-specified characters, or
compresses (–s, squeezes) all multi-character sequences of user-specified characters.
tr, when used for transliteration, transforms every character in a first list of characters into the corresponding character in a second:
>tr '\t' ':' <etsu.edu.dns.txt | head –n 3
etsu.edu.:IN:SOA:jcdc2.etsu.edu.:whitet.etsu.edu.:211052:900:600:86400:3600:

etsu.edu.:NS:jcdc3.etsu.edu.

etsu.edu.:NS:dns112.etsu.edu.
>tr '[a-z]\t' '[A-Z]\|' <etsu.edu.dns.txt | head –n 3
ETSU.EDU.|IN|SOA|JCDC2.ETSU.EDU.|WHITET.ETSU.EDU.|211052|900|600|86400|3600|

ETSU.EDU.|NS|JCDC3.ETSU.EDU.

ETSU.EDU.|NS|DNS112.ETSU.EDU.
tr’s delete mode of operation, like its squeeze mode (not shown), is invoked with a single list of characters:

>tr –d '\t' <etsu.edu.dns.txt | head –n 3
etsu.edu.INSOAjcdc2.etsu.edu.whitet.etsu.edu.211052900600864003600

etsu.edu.NSjcdc3.etsu.edu.

etsu.edu.NSdns112.etsu.edu.
tr supports several sets of special conventions for notating characters, including notations for commonly used control characters, and common character ranges::
	notation
	meaning
	
	notation
	meaning

	\NNN
	character with code NNN
	
	[CHAR*n]
	n copies of CHAR

	\\
	backslash
	
	
	

	\a
	beep (audible bell)
	
	[:alnum:]
	letters and digits

	\b
	backspace
	
	[:blank:]
	horizontal whitespace (blank, horizontal tab)

	\f
	form feed
	
	[:cntrl:]
	control characters

	\n
	new line
	
	[:digit:]
	digits

	\r
	return
	
	[:graph:]
	printable characters, excluding space

	\t
	horizontal tab
	
	[:lower:]
	lower case characters

	\v
	vertical tab
	
	[:print:]
	printable characters, including space

	
	
	
	[:punct:]
	punctuation

	CHAR1-CHAR2
	Characters between CHAR1 and CHAR2, inclusive, in ascending order
	
	[:space:]
	horizontal or vertical whitespace

	[CHAR1-CHAR2]
	Same as above
	
	[:upper:]
	upper case characters

	
	
	
	[:xdigit:]
	hexadecimal digits

The conventions in the left-hand column work with tr classic. The ones in the right may be exclusive to tr new.
7.8 grep
grep and regular expressions

grep, which is short for “get regular expression and print”, is one of UNIX’s most important contributions to the system administrator’s toolkit. grep extracts records (lines) from one of two sets of source streams, depending on how grep is invoked:

· a list of input files. Used if present on the command line. Each file in turn is processed, and scanned for content specified by grep’s remaining options.

· stdin. Assumed if the command line fails to name input files.

The record extraction process is driven by grep’s command line arguments. The most important of these arguments specify criteria for line selection, in the form of regular expressions: patterns like

^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$

that consist of ordinary characters and characters with special interpretations, and that represent possibly infinite sets of strings. Depending on its command line options, grep outputs either

· every line that contains a substring that matches one of the specified patterns (default);

· every line that matches one of the specified patterns in its entirety (-x option);
· every line that does not contain a substring that matches one specified patterns (-v option);

· every line that does not match any of the specified patterns in its entirety (-v –x options); or

· some sort of supplemental or summary information: e.g.,
· every extracted line, plus its line number (-n);

· every extracted line, plus the n lines that surround each line (-C n);
· just the first n extracted lines from every file (-m n)

· only the part of every line that matches (-o);

· a count of matching lines, without the lines themselves (-c);

· the names of any files that contain matching lines, rather than the lines themselves (-l);
· the names of any files that fail to contain matching lines, rather than any content (-L);

nothing—just return a status code that indicates whether any matches were found (-q) (see Chapter 8, The bash shell, for more information).
The examples in this section focus on the use of regular expressions in conjunction with grep’s default mode of operation. The section emphasizes the writing of workable patterns, rather than regular expression theory, which is beyond the scope of this document. By way of motivation, however, it should be mentioned that regular expressions (regexps) arise frequently in all forms of query processing. This is because regexps strike a good balance between power and simplicity: they are expressive enough to characterize patterns that arise frequently in data processing, yet reasonably simple to write, and relatively easy to process.
Regular expressions, roughly speaking, can be divided into two types:

· “Plain” regular expressions. These expressions consist entirely of characters with no special meanings. They match exactly one string: themselves. For example, the following grep commands extract all records from A-records.txt that contain the strings “art”, “phil”, and “tom”:
>grep art A-records.txt

art

A
64.177.210.1

cart1

900
A
151.141.31.124

cart2

900
A
151.141.31.43

departmentlap1

900
A
151.141.53.82

heart

86400
A
151.141.9.57

kmartc

900
A
151.141.26.244

StewartJ

900
A
151.141.54.132

>grep phil A-records.txt
hemphill

A
151.141.48.49
phil

900
A
151.141.33.233
>grep tom A-records.txt
anatomypb

86400
A
151.141.58.24

customer

900
A
151.141.60.222

tom-servo

86400
A
151.141.29.20
These examples illustrate a limitation of “plain” expressions: a lack of support for restricting the context in which a pattern appears. There is no straightforward way, for example, of framing the search for “art” to obtain only the record for art.etsu.edu.

· Regular expressions with meta-expressions (patterns). Most of grep’s power comes from meta-expressions—more commonly called patterns. A pattern is a well-formed sequence of characters that represent something other than the “plain sense” of the characters themselves, like a position on a line, a nonprinting character, or a set of strings.

grep meta-expressions (patterns) are constructed using metacharacters (pattern operators): characters with special interpretations. Two examples of such operators are circumflex (^) and backslash (\). A circumflex at the start of a regular expression represents the start of the current line of text. Backslash, also known as escape, changes the meaning of the character it precedes, according to the character escaped:
check for DNS records whose first field begins with “art”

#

>grep "^art" A-records.txt
art

A
64.177.210.1
check for DNS records whose first field begins with “phil”

#

>grep "^phil" A-records.txt
phil

900
A
151.141.33.233

check for DNS records whose first field begins with “tom”

#

>grep "^tom" A-records.txt
tom-servo

86400
A
151.141.29.20
check for DNS records whose first field is exactly “art”, or “phil”, or “tom”

#

>grep $'^art\t' A-records.txt
art

A
64.177.210.1
check for DNS records whose first field is exactly “phil”

#

>grep '^phil\t' A-records.txt
phil

900
A
151.141.33.233
check for DNS records whose first field is exactly “tom”

#

>grep '^tom\t' A-records.txt
>
These last three examples use a special bash convention, \t, to represent tab characters. In order for this convention to work, the string must be enclosed in single quotes and prefixed with a $. See the section on bash constants for more information.
Pattern writing with grep
An effective grep pattern is inclusive enough to match all lines of interest, but precise enough to exclude all irrelevant lines from the output. Effective pattern-writing requires a knowledge of one’s data; an understanding of grep’s special pattern-writing syntax; and a feel for how to match patterns to data.

The balance of this section is intended to convey a feel for grep’s pattern syntax, and how to use it. grep’s pattern operators can be divided into seven rough categories:
· operators that specify the context in which another pattern appears;
· operators that represent individual characters—typically, non-printing characters or metacharacters;

· operators that specify a set of characters, any one of which may appear at a given point in a string;

· operators that delineate a pattern, thereby permitting that pattern to be referenced by alternation, repetition and recurrence operators;

· operators that specify a set of strings, any one of which may appear at a given point in a string;
· operators that specify that the previous pattern may occur multiple times; and
operators that specify a recurrence of an earlier pattern.

Operators that match a context in which a pattern appears
Four grep pattern operators specify the context in which a pattern should appear:
^
when used at the start of a pattern, specifies the beginning of a line: e.g., the command
>grep "^art" A-records.txt
art

A
64.177.210.1
finds all occurrences in A-records.txt of lines that start with “art”.
$
matches the end of a line, when placed at the end of an expression; e.g., the pattern

>grep "254$" A-records.txt
etsu84492

900
A
151.141.86.254
npi76b615

900
A
151.141.64.254
finds all occurrences in A-records.txt of lines that end in “254”.

\b
specifies a word break: i.e., an occurrence of a non-alphanumeric character, or the start or end of the current line: e.g., the pattern

>grep "\bphil\b" A-records.txt
phil

900
A
151.141.33.233
finds all occurrences in A-records.txt of lines that contain the word “phil”.

\B
specifies a non-word break: i.e., an occurrence of an alphanumeric character: e.g., the pattern

>grep "\Bphil\B" A-records.txt
hemphill

A
151.141.48.49
finds all occurrences in A-records.txt of lines that contain a word that contains the word “phil”.

The \b and \B patterns are included in this list because \b matches positions as well as characters. This use of an escaped pair of letters—one lower-case (\b), one upper-case (\B)—to represent a constraint and its opposite is common among regular expression pattern languages.
Operators that match individual characters

\ (backslash, escape)

The escape operator redefines the characters it precedes. grep uses escapes for five purposes:
· to define shorthand notations (\b, \B) for specifying the context in which patterns appear;

· to cause certain metacharacters like ^, $, and \, to be treated as themselves;

· to cause certain characters, like \{, \}, and +, to be treated as metacharacters, rather than themselves;

· to define shorthand notations for specifying classes of characters (cf. Operators that specify any one character from a set of characters, below); and

· to refer to previous occurrences of patterns (cf. Operators that specify recurrences of patterns, below).
The following is a quick reference for backslash-based idioms for specifying non-metacharacters, metacharacters, and nonprinting characters, respectively:
	operator
	meaning
	
	operator
	meaning

	\\
	\
	
	\(
	Start of subpattern

	\^
	^
	
	\)
	End of subpattern

	\$
	$
	
	\{
	Start of repetition count

	\(
	(
	
	\}
	End of repetition count

	\)
)
	
	\?
	Zero or one occurrences

	\[
	[
	
	\+
	One or more occurrences

	\]
]
	
	\|
	Alternation: one or the other pattern

	\.
	.
	
	
	

	\-
	-
	
	
	

	*
	*
	
	
	

Examples:
check for all DNS records for IP addresses that start with 151.141.6.

#
>grep "151\.141\.6\." A-records.txt

etsu86867

1200
A
151.141.6.6

etsu87510

1200
A
151.141.6.5

etsu88956

1200
A
151.141.6.195

etsu89772

1200
A
151.141.6.5

etsu89773

1200
A
151.141.6.5

etsu90606

1200
A
151.141.6.5
etsu91217

1200
A
151.141.6.165
Operators that match any one character from a set of characters

Three—or, depending on how you count, four—grep pattern operators specify that any one character from a set of characters may appear at a certain point in a pattern:
. (period)

matches any single character. Examples:
find the first five occurrences in A-records.txt of IP addresses of the form 151.141.6xxxx

#

>grep "151\.141\.6....$" A-records.txt | head -5
apnews

900
A
151.141.65.33

avl-acc

86400
A
151.141.68.51

charles\040moore\342\225\222s\040computer

900
A
151.141.65.65

coe-internal

A
151.141.64.52
cummingsr

900
A
151.141.65.37
find all occurrences in A-records.txt of IP addresses of the form 151.141.6.xxx

#

>grep "151\.141\.6\....$" A-records.txt

etsu88956

1200
A
151.141.6.195
etsu91217

1200
A
151.141.6.165
\w, \W

match any digit or letter/ any non-digit or non-letter, respectively.
[bracket-expression]

matches any single character specified by bracket-expression. Bracket expressions can consist of four kinds of subexpressions:
· Single characters, other than -, [,], and \.
· Escaped expressions. These include \[, \], and \\, which represent [,], and \, respectively. Other operators, which need to be escaped outside of bracket expressions, should not be escaped inside of bracket expressions: for example, use ? instead of \? and + instead of \+. But make sure that ^ does not occur as the first character of a bracket expression (see below), and that – occurs only at the end.

· Range expressions. Range expressions, which have the form char1-char2, denote any character between char1 and char2 inclusive, in ASCII order.

· Character class expressions. Character class expressions, which have the form [:character-class-name:], match any single character specified by character-class: a special string that designates one of a predefined set of character ranges, as follows:

	Class name
	Meaning

	alnum
	any alphanumeric character (a-z, A-Z, 0-9)

	alpha
	alphabetic (a-z, A-Z)

	cntrl
	control characters

	digit
	digits (0-9)

	graph
	printable characters, excluding space

	lower
	lower-case characters (a-z)

	print
	printable characters, including space

	punct
	punctuation

	space
	whitespace, including tab

	upper
	upper-case characters (A-Z)

	xdigit
	hexadecimal digits (0-9, A-F)

Examples:

find data on all ETSU hosts whose names begin with a capital A, I, O, or U

#

>grep "^[AIOU]" A-records.txt

Albeniz

900
A
151.141.89.84

Ives

900
A
151.141.89.79

OEMComputer

900
A
151.141.48.80

UF-9000

900
A
151.141.53.78

UITGAGil104

900
A
151.141.32.201
UQQNK

900
A
151.141.53.191
find the names of all ETSU hosts whose names begin with (at least) four digits
#

>grep "^[0-9][0-9][0-9][0-9]" A-records.txt
000C41B01BAF

900
A
151.141.64.146

002078cb3205

900
A
151.141.55.103

0805541

900
A
151.141.65.139

081160

900
A
151.141.77.164

78007

900
A
151.141.65.107

78489

900
A
151.141.60.210

80526

900
A
151.141.65.155

84513etsu

1200
A
151.141.55.126

84668

900
A
151.141.70.133
find all song titles in the 1965 top hits list that have punctuation marks

#

>cut –d: –f1 1965-#1s.txt | grep "[[:punct:]]"
You've Lost that Lovin' Feelin'

Stop! In the Name Of Love

I'm Telling You Now

Mrs. Brown You've Got a Lovely Daughter

(Sugar Pie Honey Bunch) I Can't Help Myself

Mr. Tambourine Man

(I Can't Get No) Satisfaction

I'm Henry VIII, I Am

Help!
Turn! Turn! Turn!
find all computers whose names include backslashes
four backslashes are needed because bash converts \\\ to \\, and grep converts \\ to \
#

>grep "\\\\" A-records.txt
admin\342\225\222s\040computer

900
A
151.141.79.20

charles\040moore\342\225\222s\040computer

900
A
151.141.65.65

dj\342\225\222s\040computer

900
A
151.141.64.118

dp\040culp\040lab\342\225\222s\040computer

900
A
151.141.79.2

graphic\040design\342\225\222s\0407100

900
A
151.141.88.131

graphic\040design\342\225\222s\040computer

900
A
151.141.88.140

helen\040lane\342\225\222s\040computer

900
A
151.141.64.102

junko\040tezuka\342\225\222s\040computer

900
A
151.141.67.126

lev\342\225\222s\040g4

900
A
151.141.85.7

maria\040niederberger\342\225\222s\040computer

900
A
151.141.89.101

mark\040kilgus\342\225\222s\040computer

900
A
151.141.52.148

mike\040curry\342\225\222s\040computer

900
A
151.141.113.158

net-at\040cooperative\040e\342\225\222s\040computer

900
A
151.141.64.135

scott\040champney\342\225\222s\040computer

900
A
151.141.59.52

wayne\040dyer\342\225\222s\040computer

900
A
151.141.88.124
[^bracket-expression]

matches any single character not specified by bracket-expression. Examples:
find data on all ETSU hosts whose names begin with a character other than a letter or digit

#

>grep "^[^[:alnum:]]" A-records.txt
*.ezproxy

86400
A
151.141.112.214
*.ezproxy2

86400
A
151.141.112.213
Operators that demarcate a pattern

\(\)

grep’s parentheses operator groups multiple-character expressions for the purpose of treating a substring as a single expression. Uses of parentheses are shown below, with other examples.
Operators that match any one string from a set of strings
One grep operator supports the use of one of a set of strings in a pattern:

| (vertical bar)

alternation: specifies one in a set of strings. Examples:

check for lines that match one of three patterns:
-. start of line, then “art” ;
-. start of line, then “phil”;
-. start of line, then “tom”.

#

>grep "\(^art\)\|\(^phil\)\|\(^tom\)" A-records.txt

art

A
64.177.210.1

phil

900
A
151.141.33.233

tom-servo

86400
A
151.141.29.20
a second way of getting the previous result:
check for lines that match the following pattern:

-. start of line, then
-. one of three patterns: “art” , or “phil”, or “tom”

note the need for a second level of parentheses to specify the choice among 3 strings

#

>grep "^\(\(art\)\|\(phil\)\|\(tom\)\)" A-records.txt

art

A
64.177.210.1

phil

900
A
151.141.33.233

tom-servo

86400
A
151.141.29.20
check for DNS records with IP addresses that begin 151.141.13.

allow for one, two, or three digits after the final period

#
>grep "151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$" A-records.txt

etsu83646

900
A
151.141.13.181

ETSU87790

900
A
151.141.13.190

etsu87791

900
A
151.141.13.191

etsu87816

900
A
151.141.13.185

etsu87817

900
A
151.141.13.182

etsu87818

900
A
151.141.13.186

ETSU87934

900
A
151.141.13.194

ETSU900059

900
A
151.141.13.106

ETSU900060

900
A
151.141.13.105

etsu900061

900
A
151.141.13.103

etsu900062

900
A
151.141.13.104

etsucad

1200
A
151.141.13.26

isb-1900

A
151.141.13.5

isb-jci

A
151.141.13.31

isb-vlan

A
151.141.13.1

This final example is simpler than it looks: it selects lines that
· begin with 151 (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$),
· followed by .
 (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$),

· followed by 141.13. (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$),

· followed by a complex pattern (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$), which

· can be any of three patterns (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$):

· a single digit
 (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$), or
· a nonzero digit-digit pair (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$), or
· a 1 or 2, followed by two digits (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$),
· followed, finally, by the line’s end (i.e., 151\.141\.13\.\([0-9]\|\([1-9][0-9]\)\|\([1-2][0-9][0-9]\)\)$)

Pattern repetition operators

Four grep operators specify repetition counts for the patterns they follow:
\?
Specifies that the previous pattern can appear once, or not at all. An example is shown below, under *.
\+
Specifies that the previous pattern must appear at least once. An example is shown below, under *.

*
Specifies that the previous pattern can occur any number of times: e.g.,
matches lines that contain at least three t’s, anywhere on a line

#
>grep "t.*t.*t" A-records.txt

atstest

A
151.141.9.240

bob-drafting-plotter

A
151.141.94.50

catchtest

A
151.141.8.136

etsutreytemp

900
A
151.141.65.108

net-at\040cooperative\040e\342\225\222s\040computer

900
A
151.141.64.135

netstat

A
151.141.8.57

scott\040champney\342\225\222s\040computer

900
A
151.141.59.52

techplotter

900
A
151.141.48.203
matches lines that contain exactly three t’s, anywhere on a line.
note that the record for 151.141.64.135 drops out of the output

#
>grep "^[^t]*t[^t]*t[^t]*t[^t]*$" A-records.txt
atstest

A
151.141.9.240

bob-drafting-plotter

A
151.141.94.50

catchtest

A
151.141.8.136

etsutreytemp

900
A
151.141.65.108

netstat

A
151.141.8.57

scott\040champney\342\225\222s\040computer

900
A
151.141.59.52

techplotter

900
A
151.141.48.203
matches A (address records), which consist of

-. a host name field, followed by

-. an optional two-character network identifier field, followed by

-. an optional timeout value field, followed by

-. the letter A in its own field, followed by

-. a final IP address field

tabs, which act as field separators, follow all fields but the last.

#

Note that the output contains the same number of records as A-records.txt

#
>grep $'^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$' etsu.edu.dns.txt |
wc -l
 4852

>wc –l A-records.txt
 4852 A-records.txt

Regular expressions that limit the frequency of string occurrence must characterize the entire line’s content, including the “gaps” where the pattern does not occur. For example, the three t’s pattern was defined by
· placing the three t’s (^[^t]*t[^t]*t[^t]*t[^t]*$)

· over the length of the entire line (^[^t]*t[^t]*t[^t]*t[^t]*$)

and allowing any number of non-t’s between the t’s (^[^t]*t[^t]*t[^t]*t[^t]*$)
Similarly, the “A” record pattern limits a record’s field count to 3, 4, or 5 by limiting the number of tabs character to 2, 3, or 4. The “A” record pattern, which also shows the use of the \? and \+ operators, is also simpler than it might at first appear. Specifically, this pattern selects lines in a file that
· begin with (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$) a (DNS) field, which consists of

· at least one non-tab character (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),
· followed by a field-ending tab (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$)
· followed by an optional (network) field (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$), which consists of

· two upper-case characters (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),

· followed by a field-ending tab (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$)
· followed by an optional (timeout) field (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$), which consists of
· a nonzero leading digit (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),

· followed by zero or more digits (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),

· followed by a field-ending tab (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$)
· followed by a record identifier field (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$), with its field separator,
· followed by the final, IP address field, which consists of a nonempty string of digits and periods
(^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),

followed by the end of the line (^[^\t]\+\t\([A-Z][A-Z]\t\)\?\([1-9][0-9]*\t\)\?A\t[0-9.]\+$),

The expression that matches IP addresses has been kept imprecise for simplicity. A more precise pattern follows immediately.
\{ \}

Specifies a repetition count for the previous pattern. This count can take one of three forms:
· \{k\}
exactly k occurrences of a pattern
· \{min,\}
at least min occurrences of a pattern; possibly more

\{min,max\}
no fewer than min occurrences of a pattern; no more than max
Example:
The “A” record example again, but with

-. [A-Z][A-Z] replaced by [A-Z]\{2\}

-. [0-9.]\+ replaced by \([0-9]\{1,3\}\.\)\{3\}\([0-9]\{1,3\} – that is,
a pattern that matches n.n.n.n, where each n represents 1-3 digits.

#

>grep $'^[^\t]\+\t\([A-Z]\{2\}\t\)\?\([1-9][0-9]*\t\)\?A\t\([0-9]\{1,3\}\.\)\{3\}[0-9]\{1,3\}$' etsu.edu.dns.txt | wc -l
 4852

Pattern recurrence operators
\n
Matches the string that matches the nth grouped (\(\)) expression on this line: e.g.,
matches 151.141.-family IP addresses whose last two fields repeat

#

>grep '[0-9]\{1,3\}\.[0-9]\{1,3\}\.\([0-9]\{1,3\}\)\.\1$' A-records.txt
rn21425

900
A
151.141.85.85

charles\040moore\342\225\222s\040computer

900
A
151.141.65.65

clb-jci4

A
151.141.43.43

etsu84803dl

900
A
151.141.59.59

etsu86867

1200
A
151.141.6.6

etsu87487

900
A
151.141.81.81

ETSU88002

900
A
151.141.65.65

etsu88448

900
A
151.141.67.67

etsu88832

900
A
151.141.35.35

etsu89012

900
A
151.141.87.87

etsu900384

900
A
151.141.69.69

etsu900417

900
A
151.141.77.77

ETSU900503

900
A
151.141.89.89

etsu90559

900
A
151.141.79.79

gih10518

900
A
151.141.31.31

lch-drk7-2950g

A
151.141.8.8

libshl164089180

1200
A
151.141.112.112

libshl226089174

900
A
151.141.113.113

lmb21301

900
A
151.141.35.35

loh-2500-s0

A
151.141.2.2

meacb2vm901

900
A
151.141.51.51

swh-135a-de-1900

A
151.141.3.3

swh12426

900
A
151.141.47.47

tp03

A
151.141.23.23

tp38

A
151.141.25.25

tp41

A
151.141.24.24

verhegr2

86400
A
151.141.54.54
matches DNS names that have a two-character string, with that string’s inverse:

e.g., illiadt, pedrosportable, cah-222-2950G.resnet, dormdns.resnet
#

>grep '^[^\t]*\([^\t]\)\([^\t]\)[^\t]*\2\1[^\t]*\t' A-records.txt
illiadt

1200
A
151.141.112.188

illidadt

A
151.141.112.188

lah-55-lj4200dtn

A
151.141.34.52

pedrosportable

900
A
151.141.55.204

cah-222-2950G.resnet

A
192.168.40.5

cah-222-2950T-1.resnet

A
192.168.40.6

cah-222-2950T-2.resnet

A
192.168.40.7

dormdns.resnet

A
192.168.1.85
The first example’s pattern uses \1 to refer to the string matched by \([0-9]\{1,3\}\)—the line’s first parenthesized expression. The second uses \1 and \2 to check for a recurrence of two letters in the reverse order.
Creating readable patterns
Pattern writing can involve tradeoffs between precision and readability. Consider, for example, the following pattern, which matches a field of an IP address: a string that represents a number in the range 0-255:
\([0-9]\|\([1-9][0-9]\)\|\(1[0-9][0-9]\)\|\(2[0-4][0-9]\)\|\(25[0-5]\)\)

This pattern can be extended, using grep’s repetition operator, to obtain an exact match for an IP addresses.
\(\([0-9]\|\([1-9][0-9]\)\|\(1[0-9][0-9]\)\|\(2[0-4][0-9]\)\|\(25[0-5]\)\)\.\)\{3\}\([0-9]\|\([1-9][0-9]\)\|\(1[0-9][0-9]\)\|\(2[0-4][0-9]\)\|\(25[0-5]\)\)
This IP address pattern, in its turn, can be used to make the earlier pattern for A records more precise:
>grep $'^[^\t]\+\t\([A-Z]\{2\}\t\)\?\([1-9][0-9]*\t\)\?A\t\(\([0-9]\|\([1-9][0-9]\)\|\(1[0-9][0-9]\)\|\(2[0-4][0-9]\)\|\(25[0-5]\)\)\.\)\{3\}\([0-9]\|\([1-9][0-9]\)\|\(1[0-9][0-9]\)\|\(2[0-4][0-9]\)\|\(25[0-5]\)\)$' etsu.edu.dns.txt | wc –l
 4852

Unfortunately, this final pattern has become quite difficult to read.
One strategy for writing patterns for complex data is to ignore complexity: i.e., to use a less precise pattern, and accept the consequences: e.g.,
· To use [0-9.]+, at the cost of accepting any sequence of digits and periods; or
To use \([0-9]\{1,3\}\.\)\{3\}[0-9]\{1,3\}, which matches 151.141.4.7, but which also matches 999.09.00.09
An alternative strategy that combines readability with precision uses a script to invoke grep:
#!/bin/bash
tab=$'\t'

DNSname=$'[^\t]*'

DNSnameField=$DNSname$tab

netType='[A-Z][A-Z]'

netTypeField='\('$netType$tab'\)\?'

timeout='[1-9][0-9]*'

timeoutField='\('$timeout$tab'\)\?'

recordType='A'

recordTypeField=$recordType$tab

_0_9_='[0-9]'

_10_99_='\([1-9][0-9]\)'

_100_199_='\(1[0-9][0-9]\)'

_200_249_='\(2[0-4][0-9]\)'

_250_255_='\(25[0-5]\)'

or='\|'

ipField='\('$_0_9_$or$_10_99_$or$_100_199_$or$_200_249_$or$_250_255_'\)'

ipAddress=$ipField'.'$ipField'.'$ipField'.'$ipField

A_record='^'$DNSnameField$netTypeField$timeoutField$recordTypeField$ipAddress'$'

grep "$A_record" etsu.edu.dns.txt
Here, shell variables are used to assign descriptive names to a pattern’s components, in a way that makes the pattern’s form clear. bash is described in more detail in Chapter 8.
afterword: grep new vs. grep classic

grep at one time was packaged as two separate utilities:

· a simpler utility, called grep, which lacked support for repetition counts and character grouping.
a more powerful utility, called egrep (extended grep), which supported the full range of pattern operators.
The split allowed users to avoid the slower, more memory-intensive egrep for simple matches.
To confuse matters further, grep and egrep used different notations for egrep-only operators like { and }. According to the Free Software Foundation’s man page on grep, the notation described here is the one supported by grep classic. This notation is also the default notation for Free Software Foundation (FSF) grep: egrep-style notation can be requested using FSF grep’s –e option.

Newer versions of grep also incorporate notational conveniences that were missing from older versions of grep, including support for character classes.

7.9 awk
UNIX’s awk utility interprets the awk programming language: a pattern-based, line-oriented language for processing streams of text. awk can be viewed as a kind of super-grep that combines regular-expression-based line selection with a C-like “little” language for text manipulation.
awk, in theory: inputs, programs, outputs
Those who are new to awk and pattern-based programming languages like perl should consider skimming this section initially, then rereading it after studying the sample awk programs that follow.
awk’s inputs

awk expects two kinds of input parameters:

· a control parameter. awk’s control parameter either specifies or identifies an awk program: a text that determines how awk processes data. How awk interprets this parameter depends on how awk is invoked:

· if awk is invoked with the –f option—e.g.,

>awk –f somefile.awk …

—the argument following –f (here, somefile.awk) is treated as a file that contains an awk program.
· Otherwise, awk treats the first string after the initial list of options as its program—e.g.,

>awk –optionthis xxx –optionthat yyy …. –finaloption zzz ‘some awk program’
—and applies this program to every line in the data input.
awk programs are three-part objects that consist of
· an optional block of initial actions (BEGIN block), followed by

· a list of commands, which constitute the program’s body, followed by
· an optional block of final actions (END block).
BEGIN block. An awk program’s BEGIN block, if present, is executed once, before the rest of that program. The block consists of a series of statements, written in a C-like programming language. This language, outlined in Appendix E, supports the following constructs: string and int variables; associative (i.e., string-indexed) arrays; assignment statements; if statements; for and while loops; a few built-in functions, mostly for string processing; and a few built-in variables, including four control variables--
· RS, the character that awk uses to divide input into records (i.e., lines) (default: newline);

· FS, the character that awk is using to divide input records into fields (i.e., columns) (default: blank);

· ORS, the character that awk uses to divide output into records (i.e., lines) (default: newline); and
OFS, the character that awk uses to divide output records into fields (i.e., columns) (default: blank);
--and the following status variables:
· FILENAME, the name of the file that awk is currently processing;

· FNR, the number of the current input record in the current file;

· NR, the number of the current input record (with respect to all input files);

· NF, the number of fields in the current record;

· $0, the content of the current input record; and
$1 .. $9, the content of the current record’s first nine fields.
The block, when present, typically initializes awk control variables and user data that require initialization.
Body. An awk program’s body, which processes the input stream proper, is a list of commands of the form
/pattern/
{action}

where

· /pattern/ is a regular expression that determines what records of the data input this command will process. awk divides its data input streams into records, using a user-specifiable character known as a record separator—by default, newline. awk executes its program’s body by comparing every successive data input record against /pattern/, and invoking {action} for every record that matches.
{action} is a block of code, written in awk’s C-like programming language. This block of code is invoked whenever the command’s /pattern/ matches the current record (i.e., line) of the current data input stream. A typical {action} writes the current line ($0) or a part of it ($1, $2, etc.) to the standard output, possibly transforming the input, or computing summary statistics for later output.
An awk command may also be written as an {action} field without a /pattern/ field, or a /pattern/ field without an {action} field. If the /pattern/ field is omitted, that command’s {action} is applied to every line in every data input. Otherwise, if the {action} field is omitted, the line is printed when that command’s /pattern/ matches a line of data input.

END block. An awk program’s END block, if present, is executed once, after the program’s body finishes executing, and all lines from the data input streams have been processed. It typically closes any auxiliary files and writes any summary information computed by the program’s body to the standard output.
· a set of data parameters. awk’s data parameters determine what input awk processes. How awk interprets its data parameters depends on how awk is invoked:
· If awk is invoked with the –f option, and one or more strings follow the list of options, awk treats these strings as a list of data files to process, ignoring any data supplied via the standard input.
· If awk is invoked without the –f option, and one or more strings follow the command parameter, then awk treats these strings as a list of data files to process, ignoring any data from the standard input.

· If awk is invoked with the –f option, and no strings follow the list of options, awk expects to obtain data from the standard input.

Similarly, if awk is invoked without the –f option, and no strings follow the command parameter, awk expects to obtain data from the standard input.

awk’s output

awk, like other UNIX filters, generates a single output stream. This output stream typically consists of data generated from the utility’s input streams.
awk’s operation

The awk utility, after determining its control and data parameters, uses the control input as a guide for processing its data input. Processing, roughly speaking, operates as follows:

· For every input stream, in the order in which these streams were specified,

· For every line in the current stream, in order of appearance,
· Read this line into $0
· For every command in the body of the awk script, in order from first to last,

· If this command lacks a /pattern/, or its /pattern/ matches the current line, then
· If this command lacks an {action} field, print the current line to the standard output

· Otherwise, execute {action}. Typically, action fields do a combination of three things:

· Print the current line, or parts of it, to the standard output;
· Tabulate data on the current line; and/or
· Print tabulated data to the standard output.
awk, in practice: examples of awk programs
awk one-liners
awk as a better cut

The examples below show the use of awk to select, replicate, rearrange, and output columns from 1965-#1s.txt. These initial examples are limited to programs with one, relatively simple pattern-less command:
	Command
	Output produced, for each line of input

	awk ‘{printf(“”);}’ 1965-#1s.txt
	nothing.

	awk ‘{printf("\n");}’ 1965-#1s.txt
	one blank line.

	awk ‘{print “”;}’ 1965-#1s.txt
	one blank line. Note: print appends ORS to every record printed.

	awk ‘{print “\n”;}’ 1965-#1s.txt
	two blank lines.

	

	awk ‘{printf(“%s”,$0);}” 1965-#1s.txt
	the original line, without a final newline; all lines run together

	awk ‘{printf(“%s\n”,$0);}” 1965-#1s.txt
	the original line, as given in the input

	awk ‘{print $0;}’ 1965-#1s.txt
	same as above

	awk ‘{print;}’ 1965-#1s.txt
	same as above (Note: this was unexpected)

	awk ‘{print $0, “\n”;}’ 1965-#1s.txt
	the original line, followed by a blank line

	

	awk –F: ‘{printf(“%s”,$1);}’ 1965-#1s.txt
	song title, without a final newline; all lines run together

	awk –F: ‘{printf(“%s\n”,$1);}’ 1965-#1s.txt
	song title; equivalent to cut –d’:’ –f1 1965-#1s.txt

	awk –F: ‘{print $1;}’ 1965-#1s.txt
	same as above

	

	awk –F: ‘{print $2;}’ 1965-#1s.txt
	artist; shows one of three ways to initialize FS

	awk –v FS=’:’ ‘{print $2;}’ 1965-#1s.txt
	same as previous command, but uses –v to init FS

	awk ‘BEGIN {FS=”:”;} {print $2;}’ 1965-#1s.txt
	same as previous command, but uses a BEGIN block to init FS

	

	awk –F: ‘{printf(“%s%s\n”,$1,$2);}’ 1965-#1s.txt
	song title, artist – no field separator

	awk –F: ‘{printf(“%s:%s\n”,$1,$2);}’ 1965-#1s.txt
	song title, :, artist

	awk –F: ‘{print $1,$2;}’ 1965-#1s.txt
	song title, space, artist;
equivalent to cut –d: --output-delimiter=' ' –f1,2

Note: print appends OFS to every non-final field.

	awk –F: -v OFS=”:” ‘{print $1,$2;}’ 1965-#1s.txt
	song title, :, artist

equivalent to cut –d: –f1,2

	

	awk –F: ‘{split($0,f); for (i=1;i<NF;i++) printf(“%s:”,f[i]); print f[NF];}’ 1965-#1s.txt
	the original line, but regenerated using split():

· split($0,f) splits the current record into its constituent fields, using the current field separator (FS). The fields are then stored in f[1] … f[NF].

· for (i=1;i<NF;i++) printf(“%s:”,f[i]); prints the first NF-1 fields, in order, separated by :’s.

· print f[NF]; prints the final field, separated by ORS

	awk –F: ‘{split($0,f); for (i=NF;i>1;i--) printf(“%s:”,f[i]); print f[1];}’ 1965-#1s.txt
	The original line, with the order of the fields reversed.

The examples have also designed to illustrate three sets of awk idioms for processing data:

· idioms for initializing built-in variables. Two standard strategies for initializing built-in input variables use the –v option and BEGIN blocks. A third, the –F (field separator) option, is specific to the FS built-in.
· idioms for scanning input. One standard idiom for scanning input uses awk’s built-in scanner: i.e., FS and the $1..$9 built-in variables. The other uses split() to partition $0 into an array, and NF to count scanned fields. The former idiom is more compact, while the latter is more flexible: it potentially avoids the need to hard-coded assumptions about the number of fields per line of input.
· idioms for formatting output. awk supports two constructs for generating formatted output:

· The one, printf, is a standard C library function that formats data, then writes it to the standard output. printf provides no special support for separators: characters like newlines and field separators, if desired, must be explicitly included in the output.

· The other, print, is a built-in awk statement. print is a kind of simplified printf that generates a single output record from a comma-separated list of arguments, using OFS and ORS to separate fields end and end records, respectively.
awk as an alternative to grep
awk, when used with a single, action-less pattern, outputs lines in the file that contain the specified pattern:
>awk –F$'\t' –v OFS=$’\t’ '/The Beatles/' 1965-#1s.txt
I Feel Fine:The Beatles:Lennon, McCartney:Martin:2:1:2:Capitol

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

Ticket to Ride:The Beatles:Lennon, McCartney:Martin:22:5:1:Capitol

Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol

awk, like grep, supports regular expressions:

>awk –F$'\t' –v OFS=$’\t’ '/The B[^:]*s/' 1965-#1s.txt
I Feel Fine:The Beatles:Lennon, McCartney:Martin:2:1:2:Capitol

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

Ticket to Ride:The Beatles:Lennon, McCartney:Martin:22:5:1:Capitol

Help Me Rhonda:The Beach Boys:Wilson:Wilson:29:5:2:Capitol

Mr. Tambourine Man:The Byrds:Dylan:Melcher:26:6:1:Columbia

Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol

Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia
awk, however, does not support alternation (\|). To select either of one of several unrelated patterns, use one command per pattern—and do not omit the action clause, except (optionally) for the last command in the series.
>awk –F$'\t' –v OFS=$’\t’ '/The Beatles/ {print;} /The Rolling Stones/' 1965-#1s.txt

I Feel Fine:The Beatles:Lennon, McCartney:Martin:2:1:2:Capitol

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

Ticket to Ride:The Beatles:Lennon, McCartney:Martin:22:5:1:Capitol

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol

Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London
awk’s lack of support for alternation hinders the use of pattern-only strategies for accessing lines that match a proper subset of a related set of patterns. For example, a command pair like

>awk –F$'\t' –v OFS=$’\t’ '/The Beatles/ {} /The B[^:]*s/' 1965-#1s.txt

will not remove Beatles tunes from the list of Beach Boys, Beatles, and Byrds tunes: the second command overrides the first. A better strategy is to use the action to test for, and suppress the printing of, lines that contain an unwanted pattern:
>awk –F$'\t' –v OFS=$’\t’ '/The B[^:]*s/ if (index($0,”Beatles”) == 0) print $0;}' 1965-#1s.txt
Help Me Rhonda:The Beach Boys:Wilson:Wilson:29:5:2:Capitol

Mr. Tambourine Man:The Byrds:Dylan:Melcher:26:6:1:Columbia

Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia

awk as a pseudo-pr
As the following example illustrates, awk can also be used to compute data incrementally, over multiple input lines. The command below imitates the effect of the UNIX pr –n command, prepending line numbers to lines in the input stream, and resetting line and page numbers on page breaks:
>awk 'BEGIN {p=1; l=0;} {if ($0==^L) {p++; l=0;} else {l++; printf("%5d %5d %s\n", p,l,$0);}}'
The two unusual idioms in this command reflect awk’s roots in C. “p++” and “l++” are shorthand for “p=p+1” and “l=l+1”, respectively. And “%5d” directs printf to leave at least 5 spaces for printing the corresponding decimal number: here, p (first occurrence) and l (second occurrence).
awk as a file-based filter

Formatting increases in importance as codes become more complex. An awk command like the following
>awk –F$'\t' –v OFS=$’\t’ ' {split($0,f); for (i=1; i<=NF; i++) { for (j=length(f[i]); j>=1; j--) printf("%s",substr(f[i],j,1)); printf("%s",(i<NF)?”:”:ORS); } }’
becomes easier to manage when the code is stored in a separate file; enhanced with whitespace and comments;
/* reverse each of a line’s fields, in place */

{
split($0,f);

for (i=1; i<=NF; i++)

{
for (j=length(f[i]); j>=1; j--)

printf("%s",substr(f[i],j,1));

printf("%s", (i<NF) ? ":" : ORS);

}

}
and accessed using awk’s –f option:

>awk -F: -f reverseFields.awk 1965-#1s.txt | head –n 5

eniF leeF I:seltaeB ehT:yentraCcM ,nonneL:nitraM:2:1:2:lotipaC

nwotnwoD:kralC aluteP:hctaH:hctaH:32:1:2:srehtorB renraW

'nileeF 'nivoL taht tsoL ev'uoY:srehtorB suoethgiR:lieW ,nnaM ,rotcepS:rotcepS:6:2:2:spillihP

gniR dnomaiD sihT:syobyalP eht dna siweL yraG:eniveL ,ssarB ,repooK:tterraG:02:2:2:ytrebiL

lriG yM:snoitatpmeT ehT:etihW ,nosniboR:etihW ,nosniboR:6:3:1:ydroG
Files are particularly useful for awk programs with multiple commands. The following script, for example, which converts A records to five-field records, becomes much easier to follow when enhanced with whitespace and comments:
BEGIN { FS="\t"; OFS="\t"; }

/^[^\t]+\tA\t[^\t]+$/

{
/* 3-field A record: network class, timeout absent */

print $1, "", "", $2, $3;

}

/^[^\t]+\t[0-9]+\tA\t[^\t]+$/

{
/* 4-field A record: network class not present */

print $1, "", $2, $3, $4;

}

/^[^\t]+\t[^0-9][^\t]*\tA\t[^\t]+$/

{
/* 4-field A record: timeout not present */

print $1, $2, "", $3, $4;

}

/^[^\t]+\t[^0-9][^\t]*\t[0-9]+\tA\t[^\t]+$/
{
/* 5-field A record */

print $0;

}

{
/* default: prevent non-A records from printing */

}

See Appendix D for more examples of complex awk scripts.
7.10 sort
sort sorts lines from a single file, or a list of files, and writes the result to the standard output, according to the options that qualify sort’s behavior. These options include

· –t, which specifies a field separator (default: non-whitespace to whitespace transition);

· –d, which limits the sort to blanks and alphanumeric characters;

· –k, which specifies fields to sort on, and their relative precedence (default: all fields, left-to-right order);

· –r, which makes reverse ordering standard for sorting (default: normal order); and

–n, which makes conversion of strings to numbers the default for sorting (default: character ordering).
The following examples illustrate sort’s various options, using 1965-#1s.txt, shown above, and A-records.txt. All examples use the –t option to specify the correct field separator. For A-records.txt, the $ in front of '\t' ensures that bash passes this string to sort, intact.
	Command
	Effect

	sort –t $’\t’ A-records.txt
	Sorts address records by entire record (default). The output begins as follows:

*.ezproxy
86400
A
151.141.112.214

*.ezproxy2
86400
A
151.141.112.213

000C41B01BAF
900
A
151.141.64.146

002078cb3205
900
A
151.141.55.103

0805541
900
A
151.141.65.139

	sort –t: 1965-#1s.txt
	Sort the top songs list by entire record (default). The output begins as follows:
(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

(Sugar Pie Honey Bunch) I Can't Help Myself:The Four Tops:Holland, Dozier, Holland:Holland, Dozier, Holland:19:6:2:Motown

Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol
“Satisfaction” and “I Can’t Help Myself” appear first because parentheses precede alphabetic characters in ASCII coding.

	sort –t: –d 1965-#1s.txt
	As above, but sorts only on alphanumerics and blanks (-d). The output begins as follows:

Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

Eve of Destruction:Barry McGuire:Sloan:Sloan, Barri:23:9:1:Dunhill

Game of Love:Wayne Fontana and the Mindbenders:Ballard:Unknown:24:4:1:Fontana

Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London

	sort –t: –k8 1965-#1s.txt
	Sorts the top songs list by record label and all succeeding fields (-k8)—here, equivalent to sorting on record label, the last field in the record. The output begins as follows:
I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco

Hang on Sloopy:The McCoys:Russell, Farrell:Feldman, Goldstein, Gottehrer:2:10:1:Bang

Eight Days a Week:The Beatles:Lennon, McCartney:Martin:13:3:2:Capitol

Help Me Rhonda:The Beach Boys:Wilson:Wilson:29:5:2:Capitol

Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

	sort –t $’\t’ –k5 A-records.txt
	Sort by IP address and all succeeding fields (-k5)—here, equivalent to sorting on IP address, the last field in the record. The result, unfortunately, differs from the preferred result, which would treat IP addresses as four-part numbers. The following slice of the output illustrates the problem (see the text for an explanation):
meac3

A
151.141.38.46

dms-2950-1

A
151.141.38.5

dms-2950-2

A
151.141.38.6

dms-2950-3

A
151.141.38.7

lch-4500-t0

86400
A
151.141.4.1

sched25

86400
A
151.141.4.14

etsu.edu.

600
A
151.141.4.7

	sort –t: –d –k3 –k1 1965-#1s.txt
	An example of an incorrect way to do a multi-key sort: sort by songwriter and all succeeding fields (-k3), using song title to break ties (-k1). The following slice of the output illustrates the sort’s effect:
Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

(Sugar Pie Honey Bunch) I Can't Help Myself:The Four Tops:Holland, Dozier, Holland:Holland, Dozier, Holland:19:6:2:Motown

Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown

Stop! In the Name Of Love:The Supremes:Holland, Dozier, Holland:Holland, Dozier:27:3:2:Motown

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London
Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London
The problem: Holland-Dozier-Holland songs and Jagger-Richard songs are out of order.

	sort –t: –d -k3,3 –k1 1965-#1s.txt
	Fixes the previous sort by sorting by songwriter only (-k3,3), using song title (and the line’s remaining fields) to break ties (-k1). The following slice of the output illustrates the sort’s effect:
Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown

Stop! In the Name Of Love:The Supremes:Holland, Dozier, Holland:Holland, Dozier:27:3:2:Motown

(Sugar Pie Honey Bunch) I Can't Help Myself:The Four Tops:Holland, Dozier, Holland:Holland, Dozier, Holland:19:6:2:Motown

Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

	sort –t: –d -k3,3 –k2,k2 –k1 1965-#1s.txt
	A three key sort, involving songwriter only (-k3,3), by group only (-k2,2), by song title (and the line’s remaining fields) (-k1). The Holland-Dozier-Holland Four Tops song now moves ahead of the songs they wrote for the Supremes:
Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers

(Sugar Pie Honey Bunch) I Can't Help Myself:The Four Tops:Holland, Dozier, Holland:Holland, Dozier, Holland:19:6:2:Motown

Back in My Arms Again:The Supremes:Holland, Dozier, Holland:Holland, Dozier:12:6:1:Motown

I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown

Stop! In the Name Of Love:The Supremes:Holland, Dozier, Holland:Holland, Dozier:27:3:2:Motown

Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

	sort –t: –r –k6,6 –k5,5 1965-#1s.txt
	Attempts to sort the top songs list by month (-k6,6), then by day (-k5,5), in reverse chronological order (-r). The output, which is not the desired output, begins as follows:
Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

Eve of Destruction:Barry McGuire:Sloan:Sloan, Barri:23:9:1:Dunhill

I'm Henry VIII, I Am:Herman's Hermits:Murray, Weston:Most:7:8:1:MGM

I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London
The five songs at the top of the list made #1 on 9/4/1965, 9/23/1965, 8/7/1965, 8/14/1965, and 7/10/1965, respectively. If this sort had worked, the first two records would have been reversed; the second two records would have been reversed; and all these records would have come after those for December, November, and October.

	sort –t: –r –n –k6,6 –k5,5 1965-#1s.txt
	Fixes the previous sort by specifying that the sort data should be treated as strings that represent numbers (-n). The output now begins as follows:
Over and Over:The Dave Clark Five:Byrd:Clark:25:12:1:Epic

Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia

I Hear a Symphony:The Supremes:Holland, Dozier, Holland:Holland, Dozier:20:11:2:Motown

Get Off My Cloud:The Rolling Stones:Jagger, Richard:Oldham:6:11:2:London

Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol
The five songs at the top of the list made #1 on 12/25/1965, 12/4/1965, 11/20/1965, 11/6/1965, and 10/9/1965, respectively.

	sort –t: –k7.7nr –k2,2 1965-#1s.txt
	Sorts by time at #1, with ties broken alphabetically, by name of group. The output begins as follows:
Yesterday:The Beatles:Lennon, McCartney:Martin:9:10:4:Capitol

(I Can't Get No) Satisfaction:The Rolling Stones:Jagger, Richard:Oldham:10:7:4:London

Mrs. Brown You've Got a Lovely Daughter:Herman's Hermits:Peacock:Most:1:5:3:MGM

I Got You Babe:Sonny and Cher:Bono:Bono:14:8:3:Atco

Help!:The Beatles:Lennon, McCartney:Martin:4:9:3:Capitol

Turn! Turn! Turn!:The Byrds:Seeger:Melcher:4:12:3:Columbia

I'm Telling You Now:Freddie and the Dreamers:Garrity, Murray:Burgess:10:4:2:Tower

This Diamond Ring:Gary Lewis and the Playboys:Kooper, Brass, Levine:Garrett:20:2:2:Liberty

Downtown:Petula Clark:Hatch:Hatch:23:1:2:Warner Brothers
Note that only column 7 is sorted in reverse order, by number.

In a multi-key sort, default options can be overridden for specific keys by appending the desired options to the key itself. This important special case is illustrated by the last of the series of examples shown above, which uses a final “nr” to request a numeric sort for weeks at number 1, but not song title.
Other useful options include –b, which causes sort to ignore leading blanks in sort keys, and, –f, which causes sort to ignore the difference between upper and lower case.
The sort utility suffers from one key limitation that must sometimes be worked around, using other filters:
· Inability to handle multi-part fields. The attempt to sort IP addresses shown above (sort –t $’\t’ –k5 A-records.txt) produces an ordering that most users would consider unsatisfactory. For example, 151.141.38.46 appears before 151.141.38.5 because the sort compares 4 to 5, instead of 46 to 5. Other improper orderings include placing the three 151.141.4.* records after the four 151.141.38.* records, instead of before them, and placing 151.141.4.14 ahead of 151.141.4.7, instead of after it.

In each of these cases, sort fails by treating an IP address as a single string, instead of a sequence of four numbers. A workaround for this problem is shown below, in the section on awk.
The following job, for example, shows the use of supporting awk commands to subdivide and reassemble IP addresses before and after doing the sort. This preprocessing and postprocessing allows the list to be sorted in the expected way:
>cat A-records.txt |\
awk -F$'\t' -v OFS=$'\t' '{split ($5,ip,"."); print $1,$2,$3,$4,ip[1],ip[2],ip[3],ip[4];}' |\
sort -t$'\t' –n -k5,5 –k6,6 –k7,7 –k8,8 |\
awk -F$'\t' '{printf("%s\t%s\t%s\t%s\t%s.%s.%s.%s\n",$1,$2,$3,$4,$5,$6,$7,$8);}' |\
head –n 10
bdh-3550

A
10.0.1.2

lch-3550

A
10.219.93.1

famed

86400
A
12.107.51.71

art

A
64.177.210.1

hplaserjet4200

A
141.151.64.46

cjh-4500-2

A
151.141.1.12

loh-2500-s0

A
151.141.2.2

guc-1005-s0

A
151.141.2.6

obs-1005-s0

A
151.141.2.14

kms-1005-s0

86400
A
151.141.2.18
7.11 uniq
uniq removes repeated, adjacent copies of lines in a file. sort is commonly invoked before uniq in order to group repeated lines in the input. The following sequence of commands, for example, gives a rough count of the number of distinct ETSU network interface connections with access to the Internet:

>cut –f 5 A-records.txt | sort | uniq | wc –l

4692
8. bash Shell Scripting
A script is a sequence of statements that is interpreted by a command interpreter. A scripting language—also known as a job control language—is a language that allows users to execute scripts. Scripting languages typically support features that allow users to
· issue commands;

· test the status of a command’s execution;

· define and manipulate variables, including variables that characterize the current execution environment;

· supply these variables and other data to programs, as initial inputs; and
· control the flow of processing within the list of commands.

This chapter presents the bash scripting language. The chapter is divided into three sections, as follows:

· The first section illustrates bash’s basic operation, using several short scripts.

· The second section presents bash constructs for defining scripts. These include comments, values, variables, arrays, statement grouping constructs, selection statements, loops, command evaluation statements, built-in variables, options, and temporary files.
· The third section presents stylistic recommendations for coding bash scripts. These include recommendations regarding parameter testing and the creation of temporary files.

The material presented in this chapter is meant to be extensive, but not exhaustive. Features that are not covered include functions, pattern expansion, and most command line options. As always, see the man page (here, bash’s man page) for more information.
Some examples in this chapter use three files introduced in Chapter 7: 1965-#1s.txt, etsu.edu.dns.txt, and A-records.txt. See that chapter for descriptions of these files.
8.1 Running bash Scripts—a First Look

Running bash scripts from the command line

Log in to your account. If bash is not your default command interpreter, start it by entering the command
bash

To verify that bash is now running, enter the following commands on successive lines:

let n=10

until test $n -eq 0; do

let n=n-1

echo -n "$n "
done
The command prompt should appear after the first line is entered, and > prompts after the next three lines. Important: do not leave spaces on either side of the “=” sign!

When the final done is entered, bash should print 9 through 0 on a single line, and return a prompt.

To exit bash, type either exit or ^D (control-D).

Running bash scripts from files
Enter the following text into a file named foo, using an editor of your choice (e.g., nano):

#!/bin/bash
#

let n=10

until test $n -eq 0; do

let n=n-1

echo -n "$n "

done
Important: when entering this script,

· Make sure that #!/bin/bash is the first line in the file. This line, when used as a file’s initial line, directs the command interpreter to use bash to interpret the rest of the file. (Support for using the first line to specify a shell is standard across all major UNIX shells.)

· Make sure that # is flush with the left margin, in column 1.
· Do not leave a space before or after any of the equals (=) signs in the script.

· After entering the script, issue the command

chmod u+x foo

to make foo executable. (See man chmod or Chapter 5 for more on chmod).

· After updating foo's attributes, verify that foo is executable by executing

ls -l foo
File attributes, the file's owner, the owner's default group, and the file's creation date will be displayed, along with the file's name: e.g.,

% ls -l foo

-rwxr--r-- 1 phil user 388 Jan 16 21:58 foo

Finally, run foo, using the command
./foo

8.2 An Introduction to the bash Scripting Language
Comments

bash’s comment character is #. Anything to the right of# is excluded from a command:

># echo hello there

>echo hello # there
hello

>echo hello there #

hello there

can be used as an ordinary character by either including it in a string, or escaping it, using a backslash:

 >echo ‘#’ hello there
hello there
 >echo \# hello there
hello there
Values

Values are strings

Values are objects that can be used in computations. bash supports one basic type of value: a sequence of characters, also known as a string. Strings can be displayed, using echo; extended, using concatenation; subscripted; and stored in variables, as explained below.

Creating strings using quoting: the three styles of bash quoting

Strings are typically created by quoting characters. bash supports three styles of quoting:

· Single quoting, which directs bash to use the quoted string as given, with no special postprocessing.

Single quoting with an initial $, which adds support for the following special escape sequences:

	sequence
	translation
	
	sequence
	translation

	\a
	alert (beep)
	
	\\
	backslash (\)

	\b
	backspace
	
	\’
	single quote (‘)

	\e
	escape character (ESC)
	
	\nnn
	character whose code is nnn (octal)

	\f
	form feed
	
	\xnn
	character whose code is nn (hexadecimal)

	\n
	new line
	
	\cx
	control character whose code is ctrl-x

	\r
	carriage return
	
	
	

	\t
	tab
	
	
	

· Double quoting, which directs bash to use the quoted string as given, with the exception of expressions involving three special operators:
· $, which functions as an operator for dereferencing variables (see below, under variables) or for expanding patterns, according to the characters it precedes;

· `, which functions as an operator for evaluating a command and capturing that command’s output (see below, under command evaluation);
· \, which functions as an escape when followed by $, `, ", \, or newline.

Treating strings as numbers

One type of bash statement, the let statement, interprets a string of digits as an octal or a decimal integer, depending on whether that string’s initial digit is a 0 (octal) or a value from 1 to 9 (decimal). let statements are explained in more detail below, under variables; a few representative examples follow:
>let x=30; echo $x
30

>let x=030; echo $x
24

>let x=039; echo $x
bash: let: x=039: value too great for base (error token is “039”)
bash strings are also treated as numbers inside expressions of the form $((arithmeticExpression)). $(()) expressions (and let statements) support arithmetic expressions that contain octal and decimal numbers, in combination with standard arithmetic operators like +, -, * (multiplication), / (integer division), % (modulus), and ** (exponentiation):

>x=$((3**2+4**2)); echo $x
25
For a more detailed discussion of bash support for arithmetic expressions, consult the bash man page, or a more complete reference on bash.
Variables

Defining bash variables.

A variable is a name for a value that can be accessed and changed. bash variables are typically used to clarify logic, or make the logic more flexible.

Operations on bash variables include =, which assigns a value to a variable, and $, which dereferences (accesses) a variable: i.e., recovers its value. The following example shows the use of the = and $ operators to manipulate a variable called thisThing.
#!/bin/bash
#

thisThing=thing1

echo $thisThing

thisThing=thing2

echo $thisThing

Warning: be careful when using = to assign values to variables! In bash, whitespace matters. If you mean to use = as an assignment operator, do not leave any spaces between the name of variable and the = sign.

Variable names may also be enclosed in braces, either for clarity, or for the purpose of getting certain substitutions to work as desired, as illustrated by the examples below:
>unset food

>unset foods

>food=apple
>echo --- $foods ---
--- ---
>echo --- ${food}s ---
--- apples ---
The = operator is one of two standard ways of assigning a value to a bash variable. The other, the for statement, assigns a sequence of values to a variable, as illustrated by the following representative code:
#!/bin/bash
#

Snippet of code that displays a poem by American poet Theodore Geisel

(for statements are explained in more detail below, under loops)

#

for thisFish in one two red blue black blue old new; do

echo $thisFish fish

done

Treating variables as numbers.
bash’s let statement treats variables as numbers. let statements have the form

let variable=arithmeticExpression
where variable names a variable, and arithmeticExpression is a well-formed arithmetic expression, containing
· strings that represent (decimal and octal) integers;

· variables that name strings that represent (decimal and octal) integers;

· arithmetic operators, as discussed above, under values; and

grouping operators (open/close parentheses).

The following example shows the use of let statements to do simple computations:

#!/bin/bash
#

w=“60”; x=”7”; let y=w/x; let z=w%x

echo $w / $x = $y remainder %z

#

test1=w/x; test2=w%x; test3=$w/$x; test4=$w%$x

echo test1, test2, test3, and test4 contain $test1, $test2, $test3, and $test4, respectively
This script, which produces the following output,

60 / 7 = 8 remainder 4

test1, test2, test3, and test4 contain w/x, w%x, 60/7, and 60%7, respectively
is meant to illustrate three key points about the operation of a let statement:

Implicit deferencing. bash’s dereferencing operator ($) does not have to be used in let expressions. All names that appear in a let expression are treated as variables.
Support for numeric strings, regardless of how they were created. Let accepts variables like w that were not initialized by a let expression, so long as bash can decode them as numbers.
Let differs from simple assignment. Let must be used to force expression evaluation: without let, arithmetic operators—symbols like % and /—lose any special meaning that they might otherwise have.

Warning: be careful when using let expressions to assign values to variables! If you mean to use = as an assignment operator, do not leave any spaces between the name of variable and the = sign.

Nuances of bash variables
Managing complex arithmetic expressions.
To get let statements to process more complex arithmetic expressions, quote the expressions, as follows:

>x=10; y=20; z=30; let w=’(x*y+13)/z’; echo $w
7
Displaying a variable’s value.
Programmers commonly use expressions like echo $b to check the value of variable b. echo, which is adequate for most uses, should be avoided when (1) a string variable may contain multiple consecutive spaces and/or tabs, and (2) it’s important to reproduce this whitespace correctly.

To display variables that contains whitespace to display correctly, use a command like

set | grep "^b="
bash’s set command, with executed no arguments, shows the value of every variable defined in the current incarnation of bash.

Removing variables.
To remove a variable’s definition, use unset: e.g., unset b.

Managing references of undefined variables.
Undefined variables, by default, evaluate to the empty string (“”) when dereferenced. This, unfortunately, makes it more difficult to identify uses of variable names that have been created by accidentally misspelling or incorrectly capitalizing the names of existing variables.
To direct bash to treat a dereference of an undefined variable as an error, use the set –u command.
set +u undoes the effect of set –u, restoring the default treatment of undefined variables.
Arrays

bash supports the use of one-dimensional arrays to group data. A one-dimensional array may be defined in one of three ways:
· in a single statement, using parentheses with values. Indexing, in this case, will start with 0:

> unset x

> x=(a b c d e)

> echo ${x[0]} ${x[1]} ${x[2]} ${x[3]} ${x[4]}

a b c d e
· in a single statement, using parentheses with index expressions and values:

> unset x

> x=([5]=a [6]=b [7]=c [8]=d [9]=e)

> echo ${x[5]} ${x[6]} ${x[7]} ${x[8]} ${x[9]}

a b c d e
· incrementally, using index expressions and values:

> x[1]=a; x[2]=b; x[3]=c; x[4]=d; x[5]=e

> echo ${x[1]} ${x[2]} ${x[3]} ${x[4]} ${x[5]}

a b c d e
The {} notation must be used to dereference individual elements. If the braces are omitted, bash will dereference the array’s first element, and append the supplied subscript:
> x=(a b c d e)

> echo $x[0] $x[1] $x[2] $x[3] $x[4]

a[1] a[2] a[3] a[4] a[5]
Other special array notation includes …[@], which expands to a list of the array’s elements; ${#...[n]}, which returns the length of the array’s nth element; and ${#...[@]}, which returns the numberof elements in the array:
> x=(a bb ccc dddd eeeee)

> echo - $x[@] - ${#x[2]} - ${x[@]} -
- a bb ccc dddd eeeee – 2 – 5
Arrays and array elements, like variables, can be deleted using bash’s unset built-in:

> x=(a b c d e)

> unset ${x[2]}; echo ${x[0]} - ${x[1]} - ${x[2]} - ${x[3]} - ${x[4]}

a – b - - d – e
> unset x; echo - ${x[@]} -

- -
Statement grouping constructs
Semicolons

Semicolons separate pairs of commands that share a common line:

>let n=10; until test $n -eq 0; do let n=n-1; echo -n "$n "; done
9 8 7 6 5 4 3 2 1 0
Some authors use semicolons to put closely related control statements on a common line, for readability: e.g.., if with then, and for, until, and while with do. This pairing convention has been followed throughout this document.
Subshells
A subshell is a parenthesized list of commands. subshells are analogous to local scopes in programming languages: they function as self-contained environments with their own, local copies of variable definitions:
>unset y; x=1; echo '$x '|' $y; (echo $x '||' $y; x=2; y=3; echo $x '||' $y); echo $x '|' $y
1 |
1 ||
2 || 3
1 |
The subshell shown above (in bold) inherits a copy of the outer shell’s environment, which defines x as 1, and leaves y undefined. This subshell redefines x and defines y, but neither definition affects the outer shell.
Subshell-based scoping, while potentially useful, is a feature of bash that a casual script writer is unlikely to use. A more immediate use of subshells, perhaps, involves a subshell-based trick for separating the standard output and error streams. Consider, for example, the following progression of commands, and how the various instances of redirection operators capture (or fail to capture) stdout and stderr:
>rm –f foo.txt bar.txt; cat </dev/null >bar.txt

>ls foo.txt bar.txt > stdout-content.txt
ls: foo.txt: No such file or directory

>more stdout-content.txt

ls: foo.txt: No such file or directory

bar.txt

>ls foo.txt bar.txt >& stdout-stderr-content.txt
>more stdout-stderr-content.txt

ls: foo.txt: No such file or directory

bar.txt

>(ls foo.txt bar.txt > stdout-content.txt) >& stderr-content.txt
>more stdout-content.txt

bar.txt

>more stderr-content.txt

ls: foo.txt: No such file or directory

In the last example, ls’s output to stdout is diverted by the subshell to stdout-content.txt, and is never sent to stderr-content.txt, which collects all the leftover output—i.e., all output destined for stderr.
Selection statements

if statements

bash’s if … elif … else … fi statement supports the use of a sequence of tests for selecting among a set of choices. The initial if clause is required, along with the closing fi; the elif clauses—there may be many—and the else clause—there may be only one—are optional.

The following script shows the use of if … elif … else … fi to generate a user-readable characterization of the read, write, and execute permissions associated with a file system entry, foo:

#!/bin/bash
#

if test –r foo –a –w foo –a –x foo; then

echo foo is readable, writeable, and executable

elif test –r foo –a –w foo; then

echo foo is readable and writeable, but not executable

elif test –r foo –a -x foo; then

echo foo is readable and executable, but not writeable

elif test –r foo; then

echo foo is readable, but neither writeable nor executable

elif test –w foo –a –x foo; then

echo foo is writeable and executable, but not readable

elif test –w foo; then

echo foo is writeable, but neither readable nor executable

elif test –x foo; then

echo foo is executable, but neither readable nor writeable

else

echo foo is neither readable, nor writeable, nor executable

fi
bash’s test command evaluates the predicate encoded by its command line arguments, returning its status to the enclosing clause. Here, test’s –r, –w, and –x options are used to check for the readability, writeability, and executability of directory entry foo, respectively. test’s –a (logical and) option is an infix operator that verifies the truth of the two tests that surround it. For more information on test’s options, consult bash’s man page.
bash also supports the use of square brackets as shorthand for a test condition:

#!/bin/bash
#

if [–r foo –a –w foo –a –x foo]; then

echo foo is readable, writeable, and executable

elif [–r foo –a –w foo]; then

echo foo is readable and writeable, but not executable

elif [–r foo –a -x foo]; then

echo foo is readable and executable, but not writeable

elif [–r foo]; then

echo foo is readable, but neither writeable nor executable

elif [–w foo –a –x foo]; then

echo foo is writeable and executable, but not readable

elif [–w foo]; then

echo foo is writeable, but neither readable nor executable

elif [–x foo]; then

echo foo is executable, but neither readable nor writeable

else

echo foo is neither readable, nor writeable, nor executable

fi
The left and right brackets must be followed and preceded by spaces, respectively.

Other common bash test predicates include

· -eq, -ne, -lt, -le, -ge, -gt, which test whether one number is equal to, not equal to, less than, less than or equal to, greater than or equal to, or greater than a second, respectively;
· -n and –z, which test for non-empty and zero-length strings, respectively; and

· == (i.e., two equals signs), !=, <, and >, which test for string equality, string inequality, lexicographical precedence (i.e., left comes before right in sort order), and lexicographical successorship (i.e., left follows right in sort order), respectively.
As always, bash’s man page is one of the best places to learn more about specific logical operators, including ones that aren’t listed here. Also, representative expressions that use –eq, ==, and != are shown in later examples in this section.

Here’s a final warning that the bash manual doesn’t give that is critically important for writing tests: spaces matter. I have seen it take days for one student to debug a statement that read

if ["$name" == "Phil”]; then

instead of

if ["$name"=="Phil"]; then

The expression in brackets in the first statement checks whether a variable called $name is equal to “Phil”. The expression in brackets in the second statement, which doesn’t have spaces around “==”, is treated as an assignment statement that sets $name to “Phil”, then evaluates to TRUE, since $name is then a nonempty string. If this seems confusing, ask someone with a little more coding experience to help—but please make a point of remembering that leaving spaces around [, ==, !=, and]; is a must for getting a script to run.
case statements

bash’s multi-way case statement can be viewed as a specialized if statement streamlines a series of comparisons involving a common string. The case statement works its way through a series of regular expressions, attempting to find a match between a string of interest and one of these regular expressions. If no matches are found, no further computation is done. Otherwise, the statement list associated with the first matching pattern is executed, and the statement completes.

For more specific information on the case statement, see the bash man page or a more detailed reference.

Loops

bash supports loops with two basic kinds of drivers: lists of strings, and conditions.
List-driven loops: the bash for … in loop

bash’s for ... in loop executes a block of commands once for every string in an associated list of strings. This loop uses a control variable to parameterize each execution: the variable, which is specified in the loop’s header, takes on successive values in the list as execution progresses.
This first example shows a basic for loop that extracts lines from etsu.edu.dns.txt that begin with “art”, “phil”, or “tom”:
#!/bin/bash
#

for name in art phil tom; do

echo ">>" searching etsu.edu.dns.txt for lines that begin with $name

grep ^$name etsu.edu.dns.txt
done

This script, when executed, produces the following output:

>> searching etsu.edu.dns.txt for lines that begin with art

art
 A
64.177.210.1

>> searching etsu.edu.dns.txt for lines that begin with phil

phil
900
A
151.141.33.233

>> searching etsu.edu.dns.txt for lines that begin with tom

tom-servo
 86400
A
151.141.29.20

A for … in loop’s controlling variable can also be used to define supporting variables, as shown by this second, equivalent script:

#!/bin/bash
#

for name in art phil tom; do

pattern=^$name

echo ">>" searching etsu.edu.dns.txt for lines that begin with $name

grep $pattern etsu.edu.dns.txt
done
Yet another variation on for loops uses a variable to capture the values for the iteration, as shown below:
#!/bin/bash
#

namelist=’art phil tom’

for name in $namelist; do

echo ">>" searching etsu.edu.dns.txt for lines that begin with $name

grep ^$name etsu.edu.dns.txt
done
The for...in loop has one important limitation: a bash variable cannot be used to supply a for…in loop with strings that contain embedded blanks. This concern is illustrated by the following two sample codes:
#!/bin/bash
#

>for city in "Johnson City" "New York”; do echo $city; done

Johnson City

New York
>citylist=’'"Johnson City" "New York"'’
>for city in $citylist; do echo $city; done

“Johnson
City”
“New
York”
The best workaround for this limitation that this author has found is to use an array to store the strings, and then to step through the strings, using a second type of loop: the bash for ((...)) loop.
Counter-driven loops: the bash for ((…)) loop

bash’s for ((...)) loop operates like a C/C++ for loop. For those who are unfamiliar with C, probably the best way of explaining this construct is with examples:
#!/bin/bash
#

> for ((i=1; i<=10; i=i+1)); do echo –n $i ' '; done; echo

1 2 3 4 5 6 7 8 9 10
> for ((i=2; i<6; i++)); do echo –n $i ' '; done; echo # i++ is a shorthand for i=i+1

2 3 4 5
> for ((i=10; i>=5; i--)); do echo –n $i ' '; done; echo # i-- is a shorthand for i=i-1

10 9 8 7 6 5
> citylist='("Johnson City" "New York"')
> for ((i=0; i<${#citylist[@]}; i++)); do echo ${citylist[$i]}; done

Johnson City

New York
This last example illustrates the workaround for the embedded blanks problem discussed in the previous section.
Condition-driven loops: the bash “until” and “while” loops

The remaining type of bash loop, the condition-driven loop, uses a test to control when a loop exits. The two standard bash constructs for creating condition-driven loops are bash’s while and until operators.
The two scripts below illustrate the use of while and until loops to select records from A-records.txt with data on hosts in ETSU’s 151.141.30 subnetwork: hosts with IP addresses between 151.141.30.1 and 151.141.30.254, inclusive. Both scripts should return 43 records.
#!/bin/bash
example #1: until loop
#

let thisHost=1

until [$thisHost –eq 255]; do

grep 151.141.30.$thisHost’$’ A-records.txt

let thisHost=thisHost+1

done

#!/bin/bash
example #2: while loop
#

let thisHost=1

while [$thisHost –ne 255]; do

grep 151.141.30.$thisHost’$’ A-records.txt

let thisHost=thisHost+1

done

bash until loops halt when test returns true; while loops, when test returns false. Numeric test conditions include –eq (equals), –ne (not equals), –lt (less than), –le (less than or equal), –ge (greater than or equal), and –gt (greater than).
Nesting loops

for, while, and until loops may be nested, as the following examples show. Each example retrieves address records for the 151.141.30.*, 151.141.31.*, and 151.141.32.* networks, located in ETSU’s Gilbreath Hall. All three examples should return 267 records. The final example, which uses nested for loops, has been included for illustrative purposes, and not as a guide to good style. Note, in particular, the use of \ to continue long lines. Backslash, when used as a line continuation character, must be the last character on the line.
#!/bin/bash
example #1: while within until

#

thisSubnet=30

until test $thisSubnet –eq 33; do

let thisHost=1

while test $thisHost –ne 256; do

grep 151.141.$thisSubnet.$thisHost’$’ A-records.txt

let thisHost=thisHost+1

done

let thisSubnet=thisSubnet+1

done

#!/bin/bash
example #2: until within for
#

for thisSubnet in 30 31 32; do

let thisHost=1

until test $thisHost –eq 256; do

grep 151.141.$thisSubnet.$thisHost’$’ A-records.txt

let thisHost=thisHost+1

done

done

#!/bin/bash
example #3: for within for: not great style, but it works…

#

for thisSubnet in 30 31 32; do

for thisHost in \

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 \

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 \

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 \

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 \

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 \

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 \

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 \

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 \

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 \

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 ; do

grep 151.141.$thisSubnet.$thisHost’$’ A-records.txt

done

done
File input using loops, read, and $?
The example below dumps the contents of 1965-#1s.txt, prepending a line number to each line:
#!/bin/bash
#

linenumber=0

initialize loop drivers: line counter, input file access
3<1965-#1s.txt

#

let linenumber+=1
prime the coming loop
read -u 3 contents

#

#scan and print 1965-#1s.txt, one line at a time, until a read operation fails
#

while [$? -eq 0]; do

echo "line $linenumber :: $contents";

let linenumber+=1

read -u 3 contents

done

The example uses the following three constructs to manage the scan:
File-descriptor-specific input redirection. The generalized input redirection operator (<) shown here supports bash-based file I/O. The “3” that precedes the input redirection number is the “name” of one of bash’s 6 built-in “channels” (file descriptors) for supporting file I/O. These channels, which are numbered 0..5, allow bash to process data from up to 6 open files at any given time. By convention, file descriptor 0, 1, and 2 are reserved for stdin, stdout, and stderr, respectively. The redirection command shown above associates file descriptor 3 with 1965-#1s.txt, and uses 3 to access data.

Similar generalizations apply to output (>, >>) and error message (>&) redirection.
read. read, a built-in bash command, reads content from a specified stream. Here, read –u 3 contents directs bash to read a line from the file associated with file descriptor 3, and to store that line in a variable named contents.

Command status. $? is a built-in bash variable that designates the status (see below) of the most recently executed command. In the script above, the logic’s structure ensures that the tests check the outcome of every read operation. Here, a non-zero return status from read designates a read failure: e.g., a failure to read a next line, due to an end-of-file condition.

Interrupting loop execution: break and continue statements

bash supports two constructs that terminate loops early: continue, which terminates the current iteration of the loop in which it executes, and break, which terminates the current loop entirely.

The following example uses continue and break statements to refine the previous example, printing only those lines that contain “Dozier”:
#!/bin/bash
#

linenumber=0

initialize loop drivers: line counter, input file access

3<1965-#1s.txt

#

the following loop exits from the middle, using a break

#

while true; do

let linenumber+=1

read -u 3 contents

if [$? -ne 0]; then break; fi

terminate loop on read failure

echo $contents | grep -q Dozier

if [$? -ne 0]; then continue; fi
terminate this pass if “Dozier” didn’t write this song.

echo "line $linenumber :: $contents";

done
Here, the logic uses grep’s –q (quiet) option to suppress output while checking for the match. Note also the use of bash’s true operator to support the coding of a loop that exits in the middle.
Command evaluation: the eval statement

Simple command evaluation
bash’s eval statement accepts one argument: a string that represents a command. eval executes this string, returning the result to the standard output. The evaluated string can be a string constant, the contents of a string variable, or a string value generated in some other way, as the following examples show.

>eval “hostname”

einstein

>hn=hostname; eval $hn
einstein

Evaluate and capture

The output from an evaluated string can also be returned to the shell directly, using two equivalent syntactic constructs. The one, backquote (`), is the traditional idiom for ‘evaluate and capture’. The other, $(), is newer:

>echo A-records.txt contains `wc –l <A-records.txt` record
A-records.txt contains 4852 records
>echo A-records.txt contains $(wc –l <A-records.txt) records
A-records.txt contains 4852 records
Newham and Rosenblatt, in Learning the Bash Shell, 2nd Edition, recommend using $() instead of backquotes, on the theory that $() is easier to read, and easier to nest.
Built-in bash variables
bash supports built-in variables that present the characteristics of the current bash execution environment. This section focuses on variables that present a script’s initial parameters and the previous command’s status.
Accessing a script’s command-line arguments
bash scripts have two default sources of input:

· the standard input, which is accessed when a script executes a command that reads from stdin.
· a script’s initial command line parameters—a list of strings that follow the name of the script when that script is invoked: e.g.,

>myBashScript argument1 arg2 “this is argument 3”

The bash interpreter associates a script’s initial arguments with numbered variables. The built-in variable named ${n} refers to the nth variable on the command line when that variable is present, and the empty string when that variable is missing. Using the command shown above as an example,

· ${0} refers to “myBashScript”—the name that was used to invoke the script.
· ${1} refers to “argument1”—the script’s first parameter.
· ${2} refers to “arg2”—the script’s second parameter.
· ${3} refers to “this is argument 3”—the script’s third parameter.
${4} and all higher-numbered variables refer to the empty string.

Special variables with one-digit-long names can also be written without the curly braces: i.e., as $0, $1, $2, and so on, up to $9. All other variables must be notated with curly braces. The expression $10, for example, evaluates to the string formed by appending a “0” to the value of $1, rather than ${10}.
The following example shows the use of $0 and $1 to parameterize the read/write/execute attributes script from the section on the if statement. This revised script uses $1 as the name of the directory entry to test, and $0 to present the script’s name in error messages. The two additional tests at the start of the script prevent the script from executing when invoked with too few or too many command-line arguments, respectively:
#!/bin/bash
#

if [–z “$1”]; then # empty first argument => first parameter wasn’t supplied

echo ‘??’ $0 requires at least one parameter: the name of a directory entry

exit 1
fi

if [! –z “$2”]; then # nonempty second argument => at least 2 params supplied

echo ‘??’ $0 requires exactly one parameter: the name of a single directory entry

exit 1
fi

if [–r $1 –a –w foo –a –x $1]; then

echo $1 is readable, writeable, and executable

elif [–r $1 –a –w $1]; then

echo $1 is readable and writeable, but not executable

elif [–r $1 –a -x $1]; then

echo $1 is readable and executable, but not writeable

elif [–r $1]; then

echo $1 is readable, but neither writeable nor executable

elif [–w $1 –a –x $1]; then

echo $1 is writeable and executable, but not readable

elif [–w $1]; then

echo $1 is writeable, but neither readable nor executable

elif [–x $1]; then

echo $1 is executable, but neither readable nor writeable

else

echo $1 is neither readable, nor writeable, nor executable

fi
Placing these commands in a file named, say, ./bar, then executing

./bar foo
will determine the read, write, and execute status of a file named foo.
Another useful command-line built-in is $#, which gives the number of command-line parameters. Using $#, the two checks at the head of the previous file can be recast as follows:

if [! $# –eq 1]; then

echo '??’ $0 called with $# parameters, instead of 1: the name of a single directory entry

exit 1
fi
Still another command-line-related built-in, $@, contains a list of all command-line parameters, excepting $0. The $@ variable is useful in scripts that accept an indefinite number of parameters: for example, a more general version of this file permissions script that generates a permissions message for every file in a list of files. Two common strategies for scanning $@—one that uses a for loop, and a second that uses bash’s shift statement—are shown below:

#!/bin/bash
#

Example 1: display this script’s parameters, using a for loop to process $@.
Note: the \ before the # escapes #, causing it to be treated as a non-comment character

#

let count=1
for parameter in $@; do

echo parameter '#' $count is $parameter

let count=count+1

done
echo '$@' now has $# parameters

#!/bin/bash
#

Example 2: display this script’s parameters, using a shift-based loop to process $@.

Note: shifting $@ discards the first element from the list,

causing the old $1 to become $0; the old $2 to become $1; and so on.

#

let count=1
while [! –z “$1”]; do # while there’s still content in $@

echo parameter ‘#’ $count is $1

let count=count+1

shift

done

echo '$@' now has $# parameters
The first script, when executed with the parameter list a b c d , outputs
parameter # 1 is a

parameter # 2 is b

parameter # 3 is c

parameter # 4 is d

$@ now has 4 parameters
This output differs from the second script’s output, since shift also updates $@:

parameter # 1 is a

parameter # 2 is b

parameter # 3 is c

parameter # 4 is d

$@ now has 0 parameters
Obtaining the previous command’s status

UNIX filters and bash statements, by convention, return a status of 0 when successful, and a non-zero status on failure. The $? variable yields the status of the last command, as the following example illustrates:

#!/bin/bash
#

the following script assumes that the current directory (‘.’) is present,

and that there is no file on the system named /etc/xxyzzy

#

ls .

if [$? –eq 0]; then

echo the ls . command succeeded "(as expected)"

else

echo the ls . command failed "(not expected)"

fi

ls /etc/xxyzzy

if [$? –eq 0]; then

echo the ls /etc/xxyzzy command succeeded "(not expected)"

else

echo the ls /etc/xxyzzy command failed "(as expected)"
fi
This script, when executed, should generate two “as expected” messages, together with two blocks of unwanted output from the ls command. This output, and other unwanted output from any command, can be eliminated by redirecting it to /dev/null. Output redirection is particularly useful for replacing default messages with more user-friendly output: e.g.,

#!/bin/bash
#

ls . >& listing.txt

if [$? –eq 0]; then

cat listing.txt

else

echo something weird "happened;" the current directory “can’t” be displayed
fi
Returning a final status from a bash script
To return a status from a bash script (e.g., for use by other scripts), execute exit with a script-supplied value:
#!/bin/bash
#

exit $#
this non-standard demo script returns the number of parameters it was given
Again, it is standard UNIX practice to return 0 if a script succeeds, and a non-zero failure code otherwise. In the absence of an exit statement, a script returns the exit status of the last command executed.

bash operating modes

bash supports a variety of built-in modes, which are invoked in one of two ways:
· using a command-line option at bash start-up, including, for example, a command line of the form #!/bin/bash at the head of a script;
· using bash’s set command, after bash has started. set commands, which are defined in pairs, assume one of two forms:
· set +X and set –X, for a single-character option named X. The +X and –X forms enable and disable option X , respectively.

· set +o xxx and set -o xxx, for an option named xxx. The +o and –o forms enable and disable option xxx , respectively.
Some bash modes target specialized applications, like script debugging and conservative error management. Others target user preferences, like one that configures bash to accept keystroke sequences supported by the emacs text editor.
This balance of this section highlights modes of bash operation that support script debugging and conservative error handling. As always, for more and better information, consult bash’s man page, or a more extensive resource.

Script debugging
Syntax check. The set –n command directs bash to read commands from a non-interactive shell without executing them. This mode is ignored by interactive shells.

Input line echo. The set –v command directs bash to write each line it reads to stderr. For example, the following script

#!/bin/bash -x

#
set -v
let n=3

until test $n -eq 0; do

let n=n-1

echo -n "$n "

done
when executed, yields the following output:

let n=3

until test $n -eq 0; do

let n=n-1

echo -n "$n "

done

2 1 0

Script tracing. The –x command-line option directs bash to write each command it executes to stderr, prepending the value of the built-in variable PS4 to the output (default: +). For example, the following script

#!/bin/bash -x

#

let n=3

until test $n -eq 0; do

let n=n-1

echo -n "$n "

done
when executed, yields the following output:

+ let n=3

+ test 3 -eq 0

+ let n=n-1

+ echo -n '2 '

2 + test 2 -eq 0

+ let n=n-1

+ echo -n '1 '

1 + test 1 -eq 0

+ let n=n-1

+ echo -n '0 '

0 + test 0 -eq 0

Script tracing can also be enabled dynamically, using set +o xtrace or set +x.
Support for conservative error handling

Undefined variable dereferencing. The set +u command disallows undefined variable expansion, respectively. When undefined variable expansion is disallowed, attempting to expand an undefined variable yields an “unbound variable” error, and terminates a non-interactive invocation of bash.
File overwriting. The set +o noclobber and set –C commands disallow the overwriting of existing files by redirection operators. When file overwriting is disallowed, attempting to overwrite an existing file using the >, >&, or <> (input and output) operators yields a “cannot overwrite existing file” error, and terminates a non-interactive invocation of bash.

Error exit. The set -o errexit and set –e commands direct bash to exit if a non-zero exit status is returned by a command that is not a part of a short-circuit (||, &&) conditional expression, an if statement, or a while or an until loop.
8.3 Good Programming Style in bash—Selected recommendations

There are a variety of recommended best practices for writing code that transcend one’s particular choice of language: practices that include the use of variables with self-describing names; the use of whitespace to increase program readability; and the use of straightforward, self-documenting logic, where possible. This section focuses on recommended best practices that are specific to bash. These recommendations include strategies for parameter testing, and strategies for manipulating temporary files.

Best practices for parameter testing

Where appropriate, count parameters

Shell scripts, as a rule, are designed to accept arguments in one of two ways:

· The script accepts an arbitrary number of parameters, all of which serve the same purpose: e.g., the script formats and prints each of its arguments.
· The script accepts a set number of parameters, each of which has a set purpose: e.g., the script accepts an upper and a lower bound, and prints all numbers between those two bounds.
A production-quality script that is designed to accept a set number of parameters should always check for the proper number of parameters before processing its data. The script should also generate a self-explanatory error message when called with the wrong number of parameters.

There are two standard strategies in bash for checking how many parameters a script has been passed:

· test the value of $#. The following code, for example, checks if a script has been called with between 2 and 4 variables, and exits with a standard Unix error status—1—if not:
if [$# -lt 2]; then

echo ?? script called with too few parameters

echo $# supplied -- between 2 and 4 needed

exit 1

elif [$# -gt 4]; then

 echo ?? script called with too many parameters

echo $# supplied -- between 2 and 4 needed

exit 1

 fi
· test the individual parameters to see which have been defined. Missing parameters, by default, evaluate to nothing. Accordingly, testing for parameters that should be there but aren’t, or that are there that shouldn’t be, is a workable strategy for finding problems:
if ["$2" == ""]; then

echo ?? script called with too few parameters -- between 2 and 4 needed

exit 1

elif ["$5" != ""]; then

echo ?? script called with too many parameters -- between 2 and 4 needed

exit 1

fi

Other practical ways of testing for an empty second parameter include

if [! "$2"]; then ...

if [-z "$2"]; then ...

Do not, however, make the mistake of attempting any of the following tests:
if [$2 == ""]; then ...
if [! $2]; then…
if [-z "$2"]; then ...

When the second parameter is missing, "$2" evaluates to the empty string, while $2 evaluates to NOTHING (EMPTINESS, ZIP, NADA), which is something else entirely (and not what is wanted here).
Where appropriate, check parameter formats and types

The expected format for a parameter is dependent on the script that uses it. One type of parameter, however, that is commonly used in scripts is integers. You can check for a valid integer as a first parameter using a code like the code below:
if [`echo $1 | grep -q -x "[-]\?\(\(0[0-7]*\)\|\([1-9][0-9]*\)\)"; echo $?` -ne 0]; then

echo $1 is not an integer -- integer expected

exit 1

fi

This code’s core expression, the term to the left of -ne, is best analyzed one fragment at a time:
· The first part of this expression, echo $1, writes the value of the first script parameter to the grep expression’s stdin
· The second part of this expression, grep –q -x, reads the value of $1 from its standard input; writes nothing to stdout (-q = “quiet mode”); and returns 0 (success) or 1 (failure), according to whether $1 matches the specified pattern.

This pattern, for its part, checks for an exact match (-x) between its input, and a string that

· begins with an optional minus sign ([-]\?\(\(0[0-7]*\)\|\([1-9][0-9]*\)\)), then
· continues with one of two patterns ([-]\?\(\(0[0-7]*\)\|\([1-9][0-9]*\)\))
· an octal integer—a 0, followed by a string of octal digits ([-]\?\(\(0[0-7]*\)\|\([1-9][0-9]*\)\)), or
· a decimal integer—a non-0, followed by a string of digits ([-]\?\(\(0[0-7]*\)\|\([1-9][0-9]*\)\)).
This treatment numbers that begin with 0 as octal numbers is a bash idiom; attempting to use a value like 099 in a bash expression will trigger an error,
· The second part of this expression, echo $?, returns the status value from grep to the enclosing expression, which then tests for failure (-ne 0), and takes appropriate action on failure.
Best practices for manipulating temporary files

People who write scripts often use fixed names for temporary files like temp.dat. This practice, however, is only safe so long as

· the script being written is the only script that will ever use a file named temp.dat;

· there isn’t already a useful file in the current directory named temp.dat;

· two instances of that script will never be executed concurrently; and

· someone always remembers to clean up temp.dat after the script executes.

The strategy recommended here for manipulating temporary files, rather,

· generates files whose names are based on the process ID of the current shell script, since these names are far less likely to be reused accidentally; and

· puts these files in the standard UNIX temporary directory, /tmp: a directory that a conscientious system administrator periodically cleans up (with the aid of a script that runs periodically; and

· checks that the desired file has been created, after the command that supposedly creates this file runs.

The following code, which creates two temporary files for first capturing data, then sorting that data, illustrates the strategy recommended here.

unsortedData="/tmp/$$.dat"

sortedData="/tmp/$$.sort"

for file in $unsortedData $sortedData; do

if [-f $file -a ! -O $file]; then

echo ?? could not create temporary file $file

echo file already exists and is owned by someone else

exit 1

fi

rm -r -f $file

echo -n > $file

if [! -f $file]; then

echo ?? could not create temporary file $file

exit 1

elif [! -w $file -a ! -r $file]; then

echo ?? could not create temporary $file as readable, writeable file

rm -r -f $file

exit 1

fi

done
The above code uses bash’s built-in “$$” to reference the current shell’s process ID.
9. Find

9.1 Background: Reasons for Manipulating Directories en masse
The find utility recursively searches a directory tree, applying user-specified commands to every entry with user-specified attributes. find helps in maintaining the large collection of files and directories that accumulate in heavily used UNIX systems. The following are examples of tasks that find can help to automate:

· identifying files and directories that are probably worth deleting. These include
· unpopular files. Files that haven’t been used “for ages” are good candidates for archiving and deletion.

· null files. Zero-length files use space in directories and file headers (inodes), usually to no good end.
· hidden files. Hackers have used entries whose names begin with ‘.’ store “warez” and other pirate files.
· intermediate files. These include intermediate products of compilation, like .o files.
· detecting file system anomalies. Examples of anomalies include
· entries with now-defunct user and group IDs. Their user and group IDs, when displayed by ls –l, appear as numbers, rather than as names.
· soft link anomalies. These may include dangling links (links that reference nonexistent objects), and circular links (links that ultimately point to themselves).
· date anomalies. A file that has supposedly created, modified, or read at some point in the future may be a symptom of a more serious problem, like a system software error or a hack attempt.
· files whose names contain nonprinting characters. Files that have nonprinting characters like ^C in their names were probably created inadvertently, or maliciously: i.e., to annoy a user, or hide files.
· files whose names begin with ‘-‘. These files cannot be removed using normal rm commands, which treat the name as an rm option. Users who own such files may not know enough to remove them.
· files whose names include wildcard characters, like ‘*’. Here again, users who own such files may not know enough about rm to remove them.
· files owned by one user that reside in a directory owned by a second.

· inventorying SUID/SGID programs. These programs, which are authorized to impersonate a system’s users and groups, normally manipulate file system resources on the users’ behalf. The programs are notorious security holes, and should be carefully monitored to check for signs of subversion.
· systematically changing the attributes of files local to a directory tree. Such changes might include
· relaxing access rights on a set of files.

· removing access rights from a set of files.

· changing the owner of all files in a set of files.
· locating directories whose constituent files consume excessive amounts of space.

· manipulating a set of related files in a set of related directories as a unit. Examples of this use include
· searching a set of source files for variable definitions.

· searching a set of help files for keywords.

· replacing all occurrences of one variable name in a set of program files with a more descriptive name.
9.2 Using find to specify and process directory entries
Using find to specify entries
In the first step of a standard find job, find isolates a set of file system entries for further processing, using command-line qualifiers and tests. Some of find’s more useful qualifying switches are as follows:

· –name pattern. True if the current file’s name matches pattern, which can be a combination of “ordinary” characters and standard file system wildcard characters.

· –type c. True if the file’s type is c, where c may be either f (plain file), d (directory), s (symbolic link), b (block special), c (char special), p (named pipe), or s (socket). Specific type options may vary by system.
· –user name. True if the file belongs to the user account named name.

· –nouser. True if the file belongs to an unknown user: one that is not named in /etc/passwd (and whose account has probably been deleted since the file was created).
· –group name, –nogroup. Analogous to –user name and –nouser, for groups.

· –size –n, –size n, –size +n. True if a file contains at most/ exactly/ at least n blocks, respectively.

· –size –nc, –size nc, –size +nc. As above, but the final ‘c’ specifies that the size is given in characters.

· –atime –n, –atime n, –atime +n. True if a file was last accessed at most/ exactly/ at least n days ago.

· –ctime –n, –ctime n, –ctime +n. True if a file was last changed at most/ exactly/ at least n days ago.

· –mtime –n, –mtime n, –mtime +n. True if a file was last modified at most/exactly/at least n days ago.

These switches may be combined to specify compound conditions, using concatenation (implied and), ! (not), -o (or), and parentheses (grouping), as follows:

· find . \(-type f -o -type l \) # find files in . that are plain files or symbolic links

· find . \(-type f -o -type l \) -name '[ab]*' # as above, but only files whose names begin with a or b

Using find to process entries
Three strategies for processing entries
File system objects that find locates are typically processed in one of three ways:

· find writes their names to a file. This file is then read by other codes.
· find writes their names to the standard output. Their names are then accessed in one of two ways:
· via the standard input, as in find … | wc ….
· via shell expression substitution, as in the bash commands

· foo=$(find …)

· for bar in `find … `; do …

 the find command applies commands to each file, using find’s –exec option.
find/–exec

find’s –exec option is the trickiest of these three strategies. This option accepts an arbitrarily long list of arguments, which represents a UNIX command. This list of arguments must be terminated with a semicolon, which must be escaped when using bash. The list of arguments can include the expression {}, which the –exec option treats as a synonym for the name of the matched entry. Depending on the implementation of find, this special meaning for {} may or may not apply to instances of {} that occur in strings.
The following is an example of an –exec command that removes week-old object files and “nameless” executables from an entire file system:

find / \(-name a.out -o -name '*.o' \) -atime +7 -exec rm {} \;

chaining –exec options

Commands executed by the exec option return statuses like any other UNIX command. exec options may be chained; the chained commands execute, in sequence, until one returns a nonzero exit status, or all complete. The use of chained exec commands is shown in the following command, which checks if files that were last modified seven or more days ago have also gone without being accessed:

find . -type f -mtime +7 -exec echo not modified: {} \; -atime +7 –exec echo not accessed: {} \;
using –exec to execute bash jobs

exec commands can also be used to invoke bash jobs. This can be accomplished by invoking bash directly, using bash’s –c option to invoke the interpreter on a job of the user’s choice. The following two commands, for example, sort all files in the current directory subtree, under the assumption that the starting directory does not already contain a file named temp:
find . –type f –exec bash –c “if [! –f temp]; then sort <{} >temp; mv temp {}; fi” \;
find . –type f –exec bash –c “if [! –f temp]; then sort <\$0 >temp; mv temp \$0; fi” {} \;
The first of these two commands works only for implementations of find that support in-string expansion of {}. The second passes the file name as the first argument to the bash command string, which then uses $0 to refer to this argument. The $ is escaped, to delay the interpretation of $0 until the bash –c command executes.

Straightforward commands like the ones shown above, unfortunately, fail in the presence of filenames that contain whitespace, newlines, or quote characters. This concern is discussed in more detail below, in conjunction with find –prin0 option, which was introduced to address pathological filenames.
9.3 Complications with find
Managing find’s error output

find reports permission errors that occur when applied to directories that its user may not access. These and other error messages can be diverted to a file or the null device, using bash commands like

(find …) 2> errorMessageFile.txt

(find …) 2> /dev/null
Writing find commands that use ls to access directories by name

find and ls can be used together to identify directories by attribute, but care must be taken to ensure that ls lists directory names proper—and not directory contents. For example, in the following command,
find someDirectory -exec ls -d {} \;
the -d forces directory names (and all other entries) to list as themselves.

Using find commands in the presence of directory entries that contain nonstandard characters

Problems created by filenames with nonstandard characters

The most severe complications with find occur when applying commands to directory trees that contain entries with non-standard names. In UNIX, file names may contain any character, other than a null or a forward slash:

· \000 (null). UNIX always treats a null as a filename terminator, as evidenced by the following commands:

echo trouble > $' \000 '
creates a file named ' ', not ' \0 '
echo trouble > $'\000 '
displays "bash: : No such file or directory"
· \056 (/). UNIX always treats / as a pathname separator, as evidenced by the following command:

echo trouble > $'a\057b'
displays "bash: a/b: No such file or directory"
UNIX's forgiving attitude towards filenames leads to a situation where users can give files names that make them difficult to manage: for example,
· names with spaces

echo > $' '

creates a file named ' '
echo > $'a '

creates a file named 'a ', whose listing appears like 'a'
echo > $'a b'

creates a file named 'a b', whose listing appears to be two files, 'a' and 'b'
· names with quotation marks

echo > $'a"b'

creates a file named 'a"b', which won’t expand properly when double-quoted

echo > $'a"b'

creates a file named 'a"b', which won’t expand properly when double-quoted

· names with nonprinting characters with no visible effect on the user's display

echo > $'a\003'
creates a file named 'a^C', whose listing appears like 'a'
· names with nonprinting characters with visible effects on the user's display

echo > $'aa\010bb'

creates a file named ‘aa^Hbb', whose listing appears like 'bb'
echo > $'a\012b\012c'
creates 'a^Jb^Jc', which appears to be three files named a, b, and c
Such filenames can be used by hackers and practical jokers to interfere with attempts to use find to filter file system content. For example, executing the following command
for name in $(find . –print); do

echo $name

done

in a directory with four files named a b, 'g\012h’, and 'i\010j’ produces the following output:

.

./a

b

./g

h

./j
Making find work in the presence of nonstandard filenames

The GNU find utility (cf. www.fsf.org) supports an additional option, –print0, that prints file names with trailing nulls instead of newlines. Since UNIX filenames can't contain nulls, \000 serves as an unambiguous delimiter for find's output. For example, a command like

/usr/bin/find . –print0 | od –c
location of FSF (GNU) find on origin.etsu.edu
generates a single stream of output, with nulls between the individual filenames.

The output from find –print0, however, must be modified to make it useable with other filters. Treating nulls as delimiters and newlines and whitespace as ordinary characters confuses most UNIX filters: these other filters
· treat nulls as end-of-line markers (e.g., awk), or delete them silently from text streams (e.g., sed); and
treat newlines as end-of-record markers and whitespace characters as end-of-field markers, as noted above.

The following describes a strategy for making filenames with nulls and newlines easier to process by encoding filenames returned by find. The idea is to use od and awk to encode a sequence of null-separated filenames returned by –print0 as

-. A sequence of lines, each of which contains

-. one octal escape sequence of the form \nnn\nnn\nnn...\nnn, each of which

-. represents the string of characters in exactly one filename, encoded as octal values.

Finally, the bash eval command, together with the special bash string quoting syntax $’’, is used to access the files by name.

#!/bin/bash
dropCol1='s/^\([^]*\)\(.*\)$/\2/'

encodeEntries='BEGIN { ORS=OFS=""; } { for (i=1;i<=NF;i++) if($i=="000") print "\n"; else print "\\"$i; }'

dollarSign='$'

quote="'"

for encodedName in $(find . -print0 | od -b | sed -e "$dropCol1" | awk "$encodeEntries"); do

command="ls -lbd ""$dollarSign""$quote""$encodedName""$quote"

eval $command

done

10. Key Commands for System Administration

The following is a short list of commands that are useful for administering UNIX. Commands given here are divided into commands for observing user activity; managing user accounts; accessing the status of the local network; accessing the status of the connected wide-area network; and managing backups.
People who have administered Windows systems should recognize many of the network-related commands, since many Windows commands for network administration were originally ported from UNIX.
Much of the information in this chapter is spotty. Users interested in learning more should consult a standard reference on UNIX system administration: e.g., Nemeth and Snyder’s UNIX System Administration Handbook (ISBN 0-13-020601-6).

10.1 Observing User Activity: ps, top
ps, discussed elsewhere, shows the status and attributes of active processes. A set of system-dependent options direct ps to display information on processes like daemons and dying processes that is normally suppressed.
A related command, top, displays the most processor-intensive processes, in descending order of processor utilization. top, ironically, often shows up at the top of its own list.
10.2 Managing User Accounts
useradd, usermod, userdel. Configure user accounts.

Standard UNIX systems support three utilities for configuring user accounts. These utilities go by different names on different systems. useradd, usermod, and userdel, however, are common.
· useradd creates user accounts. Standard options specify account attributes: i.e., account name; home directory; login shell; and group(s) to which the account belongs.
· usermod changes an established account’s attributes.
userdel deletes an account, and optionally the account’s home directory.
These utilities typically operate interactively or non-interactively, depending on the command-line options supplied by the operator.

groupadd, groupmod, groupdel. Configure user groups.
Standard UNIX systems support three utilities for maintaining user groups. These utilities go by different names on different systems. groupadd, groupmod, and groupdel, however, are common.
· groupadd creates user groups. A standard option specifies the group’s identifier.
· groupmod changes an established group’s operating characteristics.
groupdel deletes a group.
These utilities typically operate interactively or non-interactively, depending on the command-line options supplied by the operator.
yppasswd, passwd. Manage user passwords.

yppasswd and passwd reset a user’s password. Use yppasswd (think “yellow pages password”) instead of passwd in systems that use NIS to maintain network-wide passwords.
10.3 Monitoring Local Network Status
· netstat. Observe the status of specified network operations. Commonly used options include
· -a, which displays the status of all network connections, including the ports in use and the utilities that are accessing these ports
· -i, which displays the status of configured network interfaces (e.g., Ethernet cards).

· -r, which displays the host’s routing tables.

· -s, which displays network processing statistics for each network protocol in use.
· arp. Access current computer’s cache of IP address-MAC address mappings. Common options include
· -a, which displays all known mappings;
· -d, which deletes all mappings from the cache;

ifconfig. Access current computer’s interface configuration tables. Specific interfaces can be configured using command line arguments. Common options include –a, which displays all configured interfaces.
10.4 Monitoring Wide-area Network Status

ping. Determine whether a remote host is active.

ping is a standard Internet protocol for determining if a host (networked computer) is responding to network-based requests. The ping utility uses the ping protocol to check for responsiveness. For example,
ping www.etsu.edu

determines whether www.etsu.edu is network-accessible and active—if www.etsu.edu supports the ping protocol. Support for ping is no longer a given, since hackers have used ping to scout hosts to subvert, and also to prevent hosts from responding to all users by flooding them with more ping requests than they can effectively support (ping of death).

Standard ping clients support various options, including how many times to ping a target host; how often; and how long to wait (timeout) after a transmission.

traceroute (tracert). Determine routing from the local host to a remote host.
traceroute, also known as tracert, is a ping-protocol-based utility for determining what intermediate hosts are relaying messages from a source to a target host. traceroute generates this list of intermediate hosts incrementally, with times needed to access each host along the route. Typical options limit the number of intermediate hosts to document, and the time to wait (timeout) when pinging an intermediate host.
whois. Query (Internet-wide) whois databases for attributes of remote networks.
The whois program queries Internet-registrar-provided databases of Internet information, supplying information on Internet-capable organizations around the Internet. Different whois databases support different queries. The database at www.networksolutions.com, for example, supports queries like

whois –h www.networksolutions.com ETSU.EDU
that return information on who owns and manages ETSU’s network.
nslookup: access a DNS database

Every organization (domain) that hosts computers on the Internet distributes contact information about itself via an Internet-accessible computer known as a name server. Information that name servers track for their domain includes that domain’s IP addresses, hostnames, and mail exchangers:

· IP addresses. An IP address is a numeric identifier that serves as a computer’s true identifier, for the purpose of Internet communication. Currently, two types of IP addresses are in use:
· IPv4 addresses. IP version 4, or IPv4 for short, is currently the most widely used version of the Internet’s fundamental transport protocol. In IPv4, a network addresses is encoded as a 32-bit-long value, and written as a series of four, period-separated, 8-bit decimal numbers: e.g., 151.141.4.7.

· IPv6 addresses. IP version 6, or IPv6 for short, is an updated version of IPv4 that was supposed to replace IPv4 in the late 1990’s—but hasn’t quite done so, yet. In IPv6, a network address is encoded as a 128-bit-long value, and written as a series of eight, colon-separated, 16-bit hex numbers: e.g., 1234:5678:9abc:def0:fed:cba9:8:7.

· Hostnames. A hostname is a name like www.etsu.edu or sports.yahoo.com that serves as a readily remembered alias for a host. Remote computers use a site’s list of hostnames to discover their IP addresses, as a standard step in host-to-host communication.

Mail exchangers. A mail exchanger is a computer that handles e-mail messages on behalf of a site’s users. A computer, for example, that tries deliver e-mail to phil@etsu.edu uses ETSU’s name server to discover that mail messages should be routed to access.etsu.edu.

The set of all Internet-accessible name server directories, taken together, is referred to as the Internet’s Domain Name Service (DNS). The nslookup utility contacts a user-specified name server (standard default: the current organization’s name server) to obtain DNS information known to that server. nslookup translates a user request into an appropriate request for information the specified name server; forwards this message to the current name server; and writes the reply to the standard output.

Typical nslookup requests involve obtaining information on computers by IP number, hostname, and type (e.g., mail exchanger). At one time, most DNS sites also supported a type of query known as a zone dump that returns all information on a specified domain. ETSU, along with many other organizations, has restricted access to zone dumps to trusted machines and personnel: these dumps provide too much information too easily to potential hackers.

10.5 Managing Backups: tar, Compression Utilities

Background: purpose, basic switches (c, x, t, r, u)

tar, the “tape archiver” command, was originally designed to write files to magnetic tape. tar has since been expanded into a general purpose backup utility. tar, though somewhat confusing to use, is critical to master if you’re concerned about backing up files.

tar supports five basic modes of operation, all of which are specified by command-line flags. Exactly one of the following five flags should be used when tar is run:

· c: create mode (creates a new archive).

· x: extract mode (extracts files from an archive, including possibly the entire archive)

· t: list mode (lists contents of archive) (note: why “t” should suggest a list command is beyond me)

· r: append mode (appends files to end of archive) (again, the use of “r” is a mystery to me)

u: update mode (appends files to end of archive that are newer than comparable files in archive).

tar also supports auxiliary switches that qualify its operation. Two relatively important switches are f and v:

· f: archive to/from a file (e.g., instead of a magnetic tape)

v: verify the command's operation (i.e., by displaying relevant files as the command is processed)

The following is a short list of common tar commands. The commands are depicted using current tar calling conventions, which omit the standard initial hyphen.

· archive someDirectory, writing to myArchive.tar:

tar cvf myArchive.tar someDirectory
· archive someDirectory, writing to myArchive.tar via the standard output:

tar cvf – someDirectory | cat > myArchive.tar
This form of tar is commonly used with utilities that compress archives, as discussed below.

· extract the contents of myArchive.tar to the current file system:

tar xvf myArchive.tar

tar xvf positions extracted files according to how the archive was originally created:

· files from archives created relative to a relative pathname (e.g., tar cvf myArchive.tar ./foo) are extracted into a comparable directory relative to the current directory (e.g., ./foo)

· files from archives created relative to an absolute pathname (e.g., tar cvf myArchive.tar /usr/bin) are extracted into a comparable directory relative to / (e.g., /usr/bin)

This dependence of tar xvf on the archive’s creation command constitutes a strong argument for using relative pathnames in preference to absolute pathnames to create directories.

· extract the contents of the standard input to the current file system:

cat myArchive.tar | tar xvf –
This form of tar is useful for cross-machine backups involving remote shells.
· display contents of myArchive:

tar tvf myArchive.tar
Archive compression

tar is commonly used with compression utilities like the ones below to shrink the archive’s size:

· compress, uncompress: the original AT&T file compression utilities. The standard suffix for files produced by compress is .Z: e.g., myArchive.tar.Z
· zip, unzip: A pair of compression utilities that use string-based (Lempel-Ziv) compression. The standard suffix for files produced by zip is .z: e.g., myArchive.tar.z (sometimes abbreviated myArchive.tz)

· gzip, gunzip: A FSF compression utility. The standard suffix for files produced by gzip is .gz: e.g., myArchive.tar.gz (sometimes abbreviated myArchive.tgz)
A standard idiom for invoking jobs that archive and compress is to use a pipe, together with the – option, to link the operation of tar with a compression utility: e.g.,

uncompress myArchive.tar.z | tar xvf –

tar cvf – someDirectory | compress > myArchive.tar.z
10.6 Managing File System Problems
files whose names begin with -
If a user accidentally creates a file named, say, -xx, using a command like
echo tough file to remove > ‘-xx’
any straightforward attempt to remove this file using rm will fail: rm treats ‘-xx’ as a command line option. The - flag solves this problem by directing rm to treat the following argument as a file name: e.g.,

rm -- -xx

removes the file named –xx created by the previous echo command
filenames with non-printing characters
Accessing and deleting files whose names contain nonprinting characters is difficult without a precise knowledge of those files’ names. Such files can be created inadvertently by scripts and programs that have run amok, or deliberately as a way of hiding files from view.

The following two bash commands, for example, create files with names that contain nonprinting characters. The first file has a three character name, only one character of which prints. The second has a two character name that consists of nonprinting characters:

echo my name is hard to read > $(echo $'\007x\001')

echo my name is invisible > $(echo $'\007\001')
The presence of these file names can be inferred from misaligned columns in ls listings, and confirmed using ls –b, which shows nonprinting characters as octal strings: e.g., \007x\001, \007\001. The files can then be removed using rm -i * , which cycles through all file names, asking if each should be removed in turn.

hidden files.
Files can also be hidden by giving them names with initial periods. Accordingly, a script that recursively traverses the file system, looking for files with names that begin with a . can be an asset for guarding against possible hacks.
inaccessible files.
Yet another strategy for hiding data in file systems uses unlink to render files invisible to ls. unlink removes an entry from a directory without returning the space that that file occupies to the file system’s repository of free storage. When a file’s last link to the directory structure is removed by unlink—instead of rm—that file becomes invisible and inaccessible using ordinary file system operations.
Files that have been completely unlinked from a file system can be recovered using fsck (file system check). fsck scans every inode (i.e., file index block) in a user-specified partition of the file system, placing any files that have become inaccessible in a system directory named /lost+found. A careful system administrator will run fsck periodically, to verify that users are not inadvertently losing files.

applying any operation to a directory tree.
find, described in Chapter 9, is valuable for automatically applying any command, including the ones described above, to a broad set of files. The discussion of find includes material on how to use find in an environment with filenames that contain whitespace, including newlines.
11. Other Commands and Features

11.1 Switching Between Working Directories: pushd, popd
Two useful bash built-in commands for managing the current directory are pushd and popd.

· pushd x works like cd x, except that pushd (short for “push directory”) also stores the previous working directories on a stack: typing pushd x followed by popd restores the previous directory.

pushd, when typed without an argument, flips between the current directory and the directory last pushed.
11.2 Alternative Names for Standard Commands: alias, unalias
The alias command, another bash built-in, allows users to define new names for commands. For example, a user who routinely changes directory to /usr/local/share could use a command like
alias share "cd /usr/local/share"

to make share synonymous with cd /usr/local/share. This alias can later be disabled by typing
unalias share

Aliases can be preset by placing them in a command interpreter’s configuration file. For example, placing the alias shown above in ~/.bashrc causes share to be defined automatically when bash starts.

11.3 Additional Options for ls
ls –i lists the inode for each of a directory’s entries: an index number that is identified with an entry’s physical position in the UNIX file system. Two directory entries foo and bar that have the same inode have been hard-linked to a common file, and act as aliases for one another. Changing foo will have the same effect on bar, and vice versa.

ls –R lists the contents of a directory recursively: i.e., the specified directory, and all directories that lie under that directory in the UNIX file hierarchy.

ls –r lists the contents of a directory in reverse order.

The –t, –u, and –c options list every directory entry’s timestamp (time of last creation or modification), time of last access, and time of last modification (i.e., change to the underlying inode), respectively. Combining any of these options with the -l option, as in ls –lt, sorts based on the specified attribute.
11.4 Remote command execution: r--- commands

Basics of r--- commands

A family of UNIX commands, commonly referred to as the “r” commands, allow users to execute jobs on remote systems to which they have access. The three classic “r” commands are rlogin, rsh, and rcp:

· rlogin: starts a remote command session. Syntax:

· rlogin — defaults to current account on current machine.
· rlogin host –l username — login as user username on system host
· rlogin username@host — alternative form of previous command
· rcp: copies files from one system to a second. Syntax:
· rcp source username@host:target — copies file source to file target on system host, subject to permission checking based on account username. If target is a relative pathname, target is interpreted relative to username’s home directory.
· rcp username@host:source target — copies file source on system host to file target, subject to permission checking based on account username. source, if a relative pathname, is interpreted relative to username’s home directory.
· rcp source host:target — same as rcp source username@host:target , except that username is taken to be the name of the current account (i.e., the name returned by the whoami command).
· rcp host:source target — same as rcp username@host:source target , except that username is taken to be the name of the current account (i.e., the name returned by the whoami command).

· rsh (remote shell) executes a command remotely, returning standard output from command to current machine. Syntax:
· rsh username@host command — executes command on system host as user username, relative to username’s home directory.
· rsh host –l username command — alternative form of rsh username@host command .
rsh host command — same as rsh username@host command, except that username is taken to be the name of the current account (i.e., the name returned by the whoami command).

rcp takes an additional switch, –r, that specifies a recursive directory copy: i.e., a copy of a complete subtree, reminiscent of cp –R.

All r--- commands are, by default, interactive. Each queries the user for a password before executing. These default queries can be disabled by creating a file in the home directory of the remote system that disables the login check for a specified set of users. This file, the .rhosts file, has the form

hostname username

hostname username

etc.
Including an entry like einstein.etsu.edu phil in a file named ~remoteuser/.rhosts on a machine named foo.bar gives anyone logged in as phil on a system named einstein.etsu.edu the right to use “r” commands to become remoteuser on foo.bar, and execute any command they wish.

The .rhosts file is a major convenience for automating remote command execution. Utilities like PVM, which transparently coordinate concurrent program execution across multiple hosts, use .rhosts files to support batch-style cross-system command execution.

rsh with tar: a useful idiom

A command like

tar cvf – mydirectory | compress | rsh remoteuser@remotehost uncompress | tar xvf –

transfers a directory tree—symbolic links and all—from a local system to a remote host. Conversely,

(rsh remoteuser@remotehost tar cf – mydirectory | compress) | uncompress | tar xvf –

transfers a directory tree from a remote host to the current host. Here, compress and uncompress are used to shorten the transfer by reducing the amount of data flowing between the local and remote systems.

Problems with r--- commands

Historically, the main concerns about r--- commands have involved system security. .rhosts files are well-known security holes. Historically, .rhosts users have often mirrored permissions in .rhosts files for convenience. The presence of a line of the form einstein.etsu.edu phil in remoteuser@foo.bar:.rhosts typically implied the existence of a line of the form foo.bar remoteuser in phil@origin.etsu.edu:.rhosts . This mirroring gave anyone who penetrated one account an immediate lead on how to find the other account—and the ability to access the mirrored account, as well.

A second security with “r” commands is their failure to protect text—including passwords—transmitted between networked hosts. A newer, equivalent version of rsh known as ssh eliminates the plaintext transmission vulnerability by transmitting all data in encrypted form.

12. Where to Learn More

There are a wide variety of UNIX how-to books on the market. Two books that I’ve used and learned from are

Learning the bash Shell, 2nd Edition (January 1998)
Authors: Cameron Newham & Bill Rosenblatt

ISBN: 1-56592-347-2

Publisher: O’Reilly and Associates (www.ora.com)

Your UNIX: The Ultimate Guide (c. 2001)

Author: Sumitabha Das

ISBN: 0-07-240500-7

Publisher: McGraw-Hill

Two other books that come with high recommendations are

UNIX Power Tools, 2nd Edition (August 1997)

Authors: Jerry Peek, Tim O'Reilly & Mike Loukides
ISBN: 1-56592-260-3

Publisher: O’Reilly and Associates (www.ora.com)

UNIX System Administration Handbook, 3rd Edition (c. 2001)

Authors: Evi Nemeth, Garth Snyder, Scott Seebass, Trent Hein

ISBN: 0-12-020601-6

Publisher: Prentice-Hall

The O’Reilly Series is a good source of reasonably inexpensive, “how-to” books on many computing technologies. These include

sed and awk (2nd Edition)

Authors: Dale Dougherty, Arnold Robbins
ISBN: 1-56-592225-5
Mastering Regular Expressions, Second Edition [includes a discussion of grep regular expressions]
Authors: Jeffrey E. F. Friedl
ISBN: 0-59-600289-0
Books on UNIX internals and hardcore UNIX programming are another matter altogether. Four classics are Bach’s The Design of the UNIX Operating System, Valhalia’s UNIX Internals, Stevens’s UNIX Network Programming: 2nd Edition, and Stevens’s Advanced Programming in the UNIX Environment.

Appendices
A. Luke Pargiter’s UNIX quick reference
The following list of representative commands is adapted from a list of commands created by former ETSU system administrator Luke Pargiter. GNU Software is noted as (GNU)
man xxx

get help on command xxx - learn it, live it, use it

space

pages through man pages

q

breaks out of the current man page

ls

gives a directory listing

ls –la

gives a more informative “long” directory listing

cat text_filename

displays a text file, similar to the DOS type command

cat text_filename | more

displays a text file, pausing after each page

pwd

displays name of working directory

cd ..

change to parent directory (note that cd.. won’t work)

cd ~

change to home directory

cp source target

copies a file

mv /somedir/source /otherdir/target
moves a file

mv ./source ./target

renames a file in current directory

nano srcname

edits a program named srcname (simple editor)

vi srcname

also edits a program names srcname (more complex)

Selected vi commands (highly incomplete!!)

i

insert text

a

append text

r

replace character

x

delete character

dd

delete line

[esc]

Escape key - change to command mode

/string
search for string

:w

write changes

:wq

write changes and quit

:q

quit (if you didn’t make any changes)

:quit!

quit without making changes (if you did make changes)

gcc -o exename srcname

compiles a C program (GNU)

g++ -o exename srcname

compiles a C++ program (GNU)

./exename

executes program exename
ps –ef | grep username

shows running processes

kill –9 xxxx (where xxxx=PID)
kill a process immediately
lp < text_filename

prints a text file

rlogin machinename

log in to UNIX machine machinename
yppasswd

changes NIS password

exit

closes a shell

logout

logs out

Use these on X Windows-based Workstations only
xemacs-mule

will edit a program (GNU)

B. Using remote terminal emulators to access a UNIX computer

A remote terminal emulator is a program that makes your computer look like a computer terminal to a second, remote computer. Using a remote terminal emulator, one can use ETSU’s PCs to issue commands on a UNIX workstation—or on a computer in another part of the world.

The balance of this appendix describes two remote terminal emulators: the classic telnet emulator, and the ssh-based putty emulator.

Telnet

A telnet utility is a remote terminal emulator that uses a classic protocol, known as the telnet protocol, for remote terminal emulation. Telnet utilities typically support two ways of naming a computer to which one wishes to connect:

· hostnames — A hostname is a registered, multi-part nickname for a computer, like www.etsu.edu, access.etsu.edu, or einstein.etsu.edu. Most people who use Internet services use hostnames, because they’re easier to remember. Conventions for abbreviating host names allow one to refer to a computer like einstein.etsu.edu as einstein, when that computer is local.

· IP addresses — An IP address is a registered, four-part numeric name for a computer. A computer’s IP address is that computer’s real name, as far as the Internet is concerned. www.etsu.edu, imail.etsu.edu, and einstein.etsu.edu, for example, have IP addresses of 151.141.9.181, 151.141.7.228, and 151.141.90.51, respectively. IP addresses are mandatory for contacting hosts without host names, and hosts whose host names have been “forgotten” by other machines on the Internet. Fortunately, both situations are now rare.

Using point-and-click to access a telnet utility from the Windows environment

· Find an entry for a telnet client in the Master Windows Start menu’s Programs submenu. This entry typically has a name like telnet or CRT. It’s typically located in a program group like Communications or Internet.
· Click on this entry.

· When the utility’s window appears, enter the hostname or IP address for the host of your choice.

· The pop-up window should vanish, leaving you connected to the specified computer. When the computer asks you to login, give your account name. Continue by supplying your password.

Using an MS/DOS command to access a telnet utility from the Windows environment
· Find an entry for the Windows command prompt in the Master Windows Start menu. This entry typically has a name like Run…
· Click on this entry.

· When the Run… option’s window appears, enter telnet, then a space, followed by the name or IP address for the host of your choice.

· The telnet command should execute, leaving you connected to the specified computer. When the computer asks you to login, give your account name. Continue by supplying your password.

Using telnet from a UNIX host
· Type telnet wxyz at the prompt, where wxyz is a target computer’s hostname or IP address, then hit enter.

· Login, if this is now required by the remote system.

Resizing the remote window
Once you’ve telnet’ed in to a UNIX host, you can use that host as easily as if you were working from a directly attached terminal. You may, however, discover that the remote system is initially confused about the number of lines and columns in your session window. Issuing the

resize

command immediately after logging in directs the command interpreter to recompute the number of lines and columns in the login window. Make sure that you wait for resize to finish executing before issuing any other commands. If the host on which you’re working doesn’t support the resize command, a command like
set lines nn

where nn is the number of lines in your remote login window, usually rights the display.

Putty

The putty utility is a freeware remote terminal emulator for Windows that uses a second, secure-shell-based protocol to access the remote host. Putty can be downloaded from a variety of websites: try searching for “putty” and “download” in any good search engine to find a site. This second emulation protocol is identical, from the user’s point of view, to the telnet protocol. The protocol, however, is also secure: transmissions between your host computer and the remote computer are encrypted during transmission. This encrypting of transmissions safeguards users against devices and programs that intercept messages sent over a network: for example, the initial, remote login message that contains your password.
As of Spring 2004, einstein.etsu.edu no longer accepts telnet connections from any remote computer. To use einstein.etsu.edu, you must use putty or some other remote terminal emulator that supports secure-shell-based terminal emulation.

C. Using ftp to transfer files to and from UNIX environments

Users of computers that are linked to the Internet commonly grant other users access to their files by placing them in “well-known directories” in “well-known computers”. Files that are commonly made available in this way include research reports, teaching materials, data files, and computer software. Various programs have been developed for transferring these files from one computer to another. Many of these programs are based on the ftp file transfer protocol, a standard that specifies rules for transferring files from one site to another.

Standard ftp Procedure

People typically use ftp to get files from remote directories on remote computers, and to send files from their computers to remote sites. The following is the standard procedure for ftp’ing to another site:

· The user first identifies the computer to access. This name can either be in the form of a hostname (like einstein.etsu.edu) or an IP address (like 151.141.90.51).

· The user then identifies the name of an account whose files she wishes to access. The ftp file transfer protocol requires that the remote computer be a multi-user system, and that the files to access be associated with an account on that system.

· The user then uses an ftp utility to contact the remote computer by name.

· The remote computer asks the user for an account name. The user supplies the name.

· The remote computer asks the user for a password. The user supplies a password.

· If the account name and password are recognized, the user is then connected with the remote system. The ftp utility is used to access the remote filing system, according to the wishes of the user. [Note: sending files to a remote system, which ftp also supports, requires permission to write into the remote directory.]

· The user then terminates the session by stopping ftp.

Anonymous ftp
The user community has evolved an informal protocol for using ftp to distribute files that are intended for general use. This protocol, which is known as anonymous ftp, works as follows:

· The user first identifies the computer to access. This name can either be in the form of a hostname (like einstein.etsu.edu) or an IP address (like 151.141.90.51).

· The user then uses an ftp utility to contact the remote computer by name.

· The remote computer asks the user for an account name. The user types anonymous.
· The remote computer then types a message like “Guest login ok. Please enter your name as a password.” The user follows instructions.

· The rest of the session proceeds as before.
Web browsers like Internet Explorer and Netscape use anonymous ftp by default to field requests involving URLs that begin with ftp://.

ftp Commands
ftp-based programs use standard commands to support file transfers. key ftp commands include

· get — gets a file from a remote computer

· put — sends a file to a remote computer

· ! — execute the command after the “!” at the local computer

· cd — changes the working directory at the remote computer

· dir — lists the contents of the directory on the remote computer

· ascii — identifies the file to be transferred as an ASCII text file

· binary — identifies the file to be transferred as binary data

· bye — closes the connection with the remote computer and quits ftp

Help for a command named xxx can be obtained by typing help xxx. Typing help by itself typically lists all available commands.

The ascii and binary commands merit additional explanation. A computer file is a named, ordered set of data that is stored according to some format—a set of rules for storing data. Any program that uses files must typically know, or discover, a file’s format before that program can process that file correctly. Unfortunately, there are many situations where a program cannot discover a file’s format on its own.
ftp is one of those programs that relies on the user to learn a file’s format. The two most important formats that users must know about are ASCII and binary. As a rule, if you can view a file in a standard text editor like nano or Notepad, then you should ask ftp to treat that file as an ASCII text file. Otherwise, you should ask ftp to treat that file as a binary file. Confusing formats can produce either unreadable text files, or unusable binary files (e.g., unexecutable data).

Sending an ASCII File Using ftp (sample session)
To send the ASCII file A:\text.txt to origin.etsu.edu, use a sequence of commands like the following:

>open origin.etsu.edu
(you connect with the UNIX file server

220 origin.etsu.edu ftp server [etc.]
(ftp gives you a message about loading TCP/IP

 protocols, and then prompts for your name

Username: youracct
(enter account name after prompt

331 Password required for youracct
(message from ftp

Password:
(enter password after prompt;

password won't echo

230 User youracct logged in.
(message from ftp

ftp:origin.etsu.edu >!A:
(set current device to A:

(needed to access floppy—irrelevant under UNIX)

ftp:origin.etsu.edu >ascii
(enter "ascii" after prompt to request

ascii file transfer

200 Type set to A.
(message from ftp

ftp:origin.etsu.edu> send text.txt
(enter command to send the file

200 PORT command successful.
(status messages from ftp

150 Opening data connection for text.txt [etc.]

Transferred ... bytes in ... seconds [etc.]

226 Transfer complete.

ftp:origin.etsu.edu> bye
(ask to leave ftp

221 Goodbye.
(final messages from ftp

If your local implementation of ftp does not support !, cd to A:\ before attempting a transfer.

Retrieving an ASCII File Using ftp (sample session)
To retrieve the ASCII file text.txt from another system to your floppy disk, use the following sequence of commands:

>open origin.etsu.edu
(you connect with the UNIX file server

220 origin.etsu.edu ftp server [etc.]
(ftp gives you a message about loading TCP/IP

protocols, and then prompts for your name

Username: youracct
(enter account name after prompt

331 Password required for youracct
(message from ftp

Password:
(enter password after prompt;

password won't echo

230 User youracct logged in
(message from ftp

ftp:origin.etsu.edu >!A:
(set current device to A:

 (needed to access floppy)

ftp:origin.etsu.edu >ascii
(enter "ascii" after prompt to request

 ascii file transfer

200 Type set to A
(message from ftp

ftp:origin.etsu.edu> get text.txt
(enter command to get the file

200 PORT command successful
(status messages from ftp

150 Opening data connection for text.txt [etc.]

Transferred ... bytes in ... seconds [etc.]

226 Transfer complete.

ftp:origin.etsu.edu> bye
(ask to leave ftp

221 Goodbye
(final messages from ftp

If your local implementation of ftp does not support !, cd to A:\ before attempting a transfer.

Sending or Retrieving a Binary File Using ftp
To transfer binary (i.e., non-text) files, replace the ascii command in the above sequences of steps with the binary command.
ftp via HTTP
Contemporary web browsers support ftp-based file retrieval from archives. The standard strategy for browser-based file retrieval is to enter a known URL for an archive site, like ftp://ftp.cs.wisc.edu. The browser then displays the requested archive as a list of links, using file system icons to differentiate files and directories. Selecting a file or directory directs the browser to issue the corresponding ftp get or cd command, respectively.
At one time, browsers required users to use different selection sequences to access ASCII and binary files. Depressing the shift key while clicking on a file caused that file to be downloaded as an ASCII file, instead of a binary file—or maybe the other way around? In any case, newer browsers apparently eliminate the need to specify a file’s format with an automatic check: the IE 6.0 and Mozilla 1.5 help guides are silent about mode-sensitive key sequences for ftp: file transfers.
ncftp

ncftp, a free, downloadable ftp client developed by NCSA (near UIUC), is an enhanced ftp with several nice features: support for anonymous ftp as its default mode of operation; support for hostname completion, based on a list of recently visited sites; and a scripting feature for automating downloads.
Using ftp-based Utilities to Explore a Remote Site
When visiting a ftp site for the first time, look for files with names like readme, README, Readme, and Readme.txt, which describe a site’s content, and files with names like ls, ls-lR, and dir, which usually list the site’s files. If ftp’s dir command produces too much text too quickly, a command like dir * > temp may be useful: this command saves the current directory’s listing in a file named temp for later examination.

Special File Transfer Formats
Archived files are often compressed (i.e., compacted) to save space on disk, and speed transfers. Typical suffixes for compressed files include .Z, .z, .gz, and .zip. Use binary mode to transfer compacted files, and uncompression utilities to restore them once they’ve been retrieved. These utilities include the UNIX compress (for .Z, .z), GNU’s gunzip utility (for .gz), pkunzip utility (for .zip), WinZip (several formats).

Sets of related, archived files are often combined into individual, archives files, to simplify downloads. Typical suffixes for archive files include .tar, .ar, and .zoo. Whether ASCII or binary mode should be used to transfer an archive depends on the archival format: if in doubt, try both. Use archival utilities to unbundle archives once they’ve been retrieved. These utilities include the UNIX tar utility (for .tar) and newer uncompression utilities like pkunzip and WinZip (several formats).
Such files, which typically have combined suffixes like .tar.Z, .tar.gz, .tgz, and .tz, should be downloaded using binary mode, and then uncompressed before being unbundled.
UNIX vs. DOS/Windows Text File Encodings: Two Cautions
DOS/Windows and UNIX use slightly different ways of representing text files. In a DOS (or Windows) text file, every line has extra <control-M> character at its end; in UNIX, text files lack these final <control-M>s. [In the jargon, DOS text files have hard carriage returns; UNIX text files, soft carriage returns.] ftp automatically converts between the two file formats if ascii file transfer is specified. If ascii is not specified, DOS text files will look irregular when displayed in a UNIX editor, and vice-versa.

DOS/Windows and UNIX also use different strategies for encoding text files. The typical UNIX text file is encoded as an 8-bit ASCII file. A DOS (or Windows) text file may be encoded in ASCII, or—more typically—in one of several flavors of Unicode. The most troublesome of Unicode encodings are the ones like UTF-16 that use more than one byte to encode the first 128 ASCII characters. If you attempt to download a text file from a DOS or Windows environment, and find that file unusable, try using a command like od to check that file’s contents. If the downloaded file has multiple null (0) bytes, chances are you’ve downloaded a text file that was saved in UTF-16. To fix this problem, use a file conversion utility or text editor, like Notepad, that accepts UTF-16 input and supports ASCII or UTF-8 output.

D. Data for UNIX Filter and Shell Examples: DNS zone dumps
About Zone Dumps

Chapters 6 and 7 show the use of UNIX filters and shells to generate reports from a zone dump: a type of text file that documents a site’s networked computers. A zone dump is organized a list of resource records: assertions about that network’s computers, including their names, capabilities, and addresses. Each resource record occupies one line in a zone dump, except for records that use paired parentheses to extend that record to multiple lines (see the SOA record below for an example). Empty lines in zone dumps are ignored. Any text on a line to the right of a semicolon is treated as a comment, and also ignored:

;

; Database file etsu.edu.dns for etsu.edu zone.

; Zone version: 211052

;
The format of records that present content depends on the record’s type. The set of supported record types has evolved over time, since the DNS was first proposed by Paul Mockapetris of USC [Albitz97].
Address record types

The following, partial list of DNS resource record types is based on [Albitz97, Microsoft03]. All of the examples given below assume a default domain of etsu.edu.
SOA (start of authority) records
A DNS database must contain exactly one start of authority (SOA) record. This record, which identifies the characteristics of the current domain, must be the first record in the file:

; The first line in the following record identifies the current domain, etsu.edu, as an Internet (IN) domain.

; It also identifies the domain’s primary name server, jcdc2.etsu.edu, and an e-mail address at which

; the name server’s administrator can be reached (whitet@etsu.edu)

;

; Note the use of @ as a shorthand for etsu.edu, and the use of parentheses to specify a multi-line record

;

@
IN
SOA
jcdc2.etsu.edu. whitet.etsu.edu. (

211052

; a 32-bit serial number for this version of etsu.edu’s DNS (larger (more recent version)

900

; clients should refresh cached copies of this data at least once per 900 seconds (15 minutes)

600

; clients should wait for at least 600 seconds (10 minutes) before retrying a failed refresh

86400

; after 24 hours expire, any cached copies of this data can no longer be treated as valid

3600
)
; individual entries should be treated as valid for no longer than 3600 seconds (1 hour)
A (host address) records

A host address (A) record associates a host name with an optional timeout value and an Ipv4 address: e.g.,

anant
A
151.141.56.38

; assign IP address 151.141.56.38 to anant.etsu.edu
antivirus
86400
A
151.141.9.54
; assign IP address 151.141.9.54 to antivirus.etsu.edu

; refresh this address every 86,400 seconds (i.e., 24 hours)
Host address records support an additional, optional network class field that follows the initial hostname field. In contemporary networks, this field, if present, is typically set to IN (Internet).
CNAME (canonical) records

A canonical name (CNAME) record associates a DNS name with another DNS name that this first DNS name aliases: e.g.,

www
86400
CNAME
webserv.etsu.edu.
; www.etsu.edu aliases webserv.etsu.edu
Canonical name records, like address records, support optional network class and timeout fields.
MX (mail exchanger) records
A mail exchanger (MX) record identifies a host that forwards e-mail, together with the domain that this host services, and a preference (i.e., ranking) for the host, relative to other MX hosts for the specified domain.
dormdns
MX
10
dormdns.etsu.edu.

; preference for this exchanger = 10
Preference values are typically small positive integers. The smaller the integer, the more highly preferred the host. For example, a remote site attempting to send e-mail to an account in the dormdns.etsu.edu domain should try dormdns.etsu.edu ahead of a host with preference 20.
NS (name server) records
A name server (NS) record identifies a host that stores DNS information for a specified domain:
@
NS
jcdc1.etsu.edu.
; @ is a shorthand for the current domain, etsu.edu.
SRV (service locator) records
A service locator (SRV) record identifies a host that supports a networked service:
_ldap._tcp.dc._msdcs
600
SRV
0
100
389
jcdc2.etsu.edu.

The above record, for example, identifies jcdc2.etsu.edu as a server for the dc._msdcs domain. This server supports access to LDAP, a protocol that supports networked access to a file-system-like database of miscellaneous information. The service can be accessed via TCP port 389, has a preference (i.e., ranking) of 0, and a weight (i.e., secondary preference) of 100.
TXT (text) records
A text (TXT) record associates a domain name with a descriptive string:

84574
TXT
(“swip://151.141.65.35/”)

; not sure of what this comment means
Other
As of this writing, other viable DNS record types include
· AAAA (IPv6 address)
· AFSDB (Andrew File System database)
· ATMA (Asynchronous Transfer Mode address)
· HINFO (host info: associate a host with its CPU type and operating system)
· ISDN (Integrated Digital Services Network host address)
· KEY (domain public key value)
· MB (mailbox)
· MG (mail group)
· MINFO (mailbox list information)
· MR (renamed mailbox)
· NXT (next (or nonexistent) resource)
· OPT (resource option)
· PTR (IP address-to-hostname reverse binding)
· RP (responsible person)
· RT (route through)
· SIG (domain digital signature)
· WKS (well-known TCP services supported by a particular host)
X.25 (X.25 public switched phone number).
The various specifications for DNS resource record types, like RFC 1035, also define types that are no longer in common use. Consult [Albitz97, Microsoft03] for details.

Special zone dump notational conventions
Initial space
When the first column in a zone dump record contains a space or a tab, that record’s first field is the same as the previous record’s first field: e.g.,
_kpasswd._udp
600
SRV
0 100 464
jcdc2.etsu.edu.

600
SRV
0 100 464
jcdc1.etsu.edu.

600
SRV
0 100 464
jcdc3.etsu.edu.
Initial @
When the first column in a zone dump record contains a space or a tab, that record’s first field is the same as the previous record’s first field: e.g.,
@
600
A
151.141.8.100
; etsu.edu can be contacted at any of four IP addresses
@
600
A
151.141.8.110

@
600
A
151.141.8.101

@
600
A
151.141.4.7
Final period
If a DNS name is not terminated with a period, the name of the current domain is appended to that name. This convention, for example, implies that jcdc2.etsu.edu is a shorthand for jcdc2.etsu.edu.etsu.edu—and is not the same as jcdc2.etsu.edu. (i.e., jcdc2).
Using nslookup and awk to get a Clean Zone Dump

A zone dump contains various kinds of information about a network’s configuration: e.g., site IP addresses, server names, and host aliases. The two subsections below describe how to use nslookup to obtain a zone dump, and awk to reformat this output to make it easier to analyze: i.e., to eliminate comments, collapse multi-line resource records into individual lines, and expand shorthands to make all data explicit.
Using nslookup to obtain a zone dump
Zone dumps can be generated using nslookup, a utility that retrieves information about a site’s network configuration. The basic operation of nslookup is described in Chapter 10, along with terminology associated with network configuration: i.e., hostname, IP address, IPv4 address, IPv6 address, name server, domain, Domain Name System (DNS).

ETSU, like other organizations, has restricted access to zone dumps to trusted machines and personnel. Zone dumps simply provide too much information too easily to potential hackers to make them readily available.

If, however, you can use an nslookup client to obtain a zone dump, a procedure like the one given below will produce one.

· Enter the nslookup command. This will start nslookup interactively.

· At the first prompt, issue a command that names the name server that you wish to access. For example, at ETSU, a command like

server jcdc1.etsu.edu

specifies that ETSU’s primary name server will be queried for the dump.

· At the next prompt, issue a command that lists the domain you wish to access, and saves this output to a file:

ls -d etsu.edu > rawdns.txt

The command shown above, for example, dumps the entirety of the ETSU host name data base to a file named dns.txt. Make sure that you leave a space before the “-”, and on either side of the “>”.

· Terminate nslookup by entering ^D.

Using awk to make zone dumps easier to analyze

The zone dumps returned by nslookup exhibit irregularities that make them easier to create and read, but more difficult to process:

· Extraneous output from the ls –d command, which shows the command and name server used to generate the listing as the first two lines of its output.
· Comments.

· Resource records that span two or more lines.

· Blank lines.

· The use of @ to abbreviate the current domain.

· The use of an initial space to abbreviate the DNS name from the previous record.

· The use of variable numbers of spaces and/or tabs to separate fields in resource records

The following command eliminates these irregularities, yielding a DNS listing that consists solely of resources records, with one record per line; no blank lines; no comments; and no abbreviations:

tail +3 rawdns.txt | awk –F ';' '{print $1;}’ | awk –F '' '/[^\s]/ {print $0;}' |\

awk –f joinlines.awk | awk –f expand.awk | tr –s '[:blank:]' '\t' > dns.txt

Specifically,

· The tail command strips the extraneous output from the ls –d command.

· The first awk –F command removes comments from the end of each line.

· The second awk –F command prints a line if and only if that line has at least one non-whitespace character.

· The awk –f joinlines.awk command joins multi-line records, eliminating the parentheses used to flag the line breaks.

· The awk –f expand.awk command replaces @ and initial space shorthands with a user-specified domain string and the abbreviated DNS name, respectively.

· The final tr –s '[:blank:]' '\t' reduces sequences of spaces and/or tabs to individual characters, and then replaces that character with a single tab.
Listings for the joinlines.awk and expand.awk scripts follow immediately. Note that the first line of expand.awk contains a variable name, currentDomainName, which must be updated for the target site.

joinlines.awk

BEGIN { FS=""; continuationMode=FALSE; lineProcessed=0; TRUE=1; FALSE=0; SUCCESS=0; FAIL=-1; }

/^[^(]*\([^(]*\)[^)]*$/
{
/* paired parentheses on current line */

if (continuationMode == TRUE)

{
printf("invalid DNS file format: nested parens at line %d\n",NR);

exit FAIL;

}

openParenIx = index($0,"("); closeParenIx = index($0,")");

finalIx = length($0)-1;

beforeOpenParen = substr($0, 1, openParenIx-1);

betweenParens = substr($0, openParenIx+1, closeParenIx-openParenIx-1);

afterCloseParen = substr($0, closeParenIx+1, finalIx-closeParenIx-1)

printf("%s%s%s\n", beforeOpenParen, betweenParens, afterCloseParen);

lineProcessed=TRUE;

}

/^[^)]*\([^()]*$/

{
/* single open parenthesis on current line */

if (continuationMode == TRUE)

 {
printf("invalid DNS file format: nested parens at line %d\n",NR);

exit FAIL;

}

openParenIx = index($0,"("); finalIx = length($0)-1;

beforeOpenParen = substr($0, 1, openParenIx-1);

afterOpenParen = substr($0, openParenIx+1, finalIx-openParenIx-1)

printf("%s%s", beforeOpenParen, afterOpenParen);

continuationMode=TRUE;

lineProcessed=TRUE;

}

/^[^(]*\)[^()]*$/

{
/* single close parenthesis on current line */

if (continuationMode == FALSE)

{
printf("invalid DNS file format: bad close paren at line %d\n",NR);

exit FAIL;

 }

closeParenIx = index($0,")"); finalIx = length($0)-1;

beforeCloseParen = substr($0, 1, closeParenIx-1);

afterCloseParen = substr($0, closeParenIx+1, finalIx-closeParenIx-1)

printf("%s%s\n", beforeCloseParen, afterCloseParen);

continuationMode=FALSE;

lineProcessed=TRUE;

}

/[()].*\(/

{
/* line contains double open paren or close-open */

printf("improper parenthesization at line %d\n",NR);

exit FAIL;

}

/\).*[()]/

{
/* line contains double close paren or close-open */

printf("improper parenthesization at line %d\n",NR);

exit FAIL;

}

{
/* default */

if (lineProcessed == FALSE)

 {
printf("%s", $0);

if (continuationMode == FALSE) printf("\n");

}

lineProcessed=FALSE; /* reset for next line */

}

END

{
if (continuationMode == TRUE)

{
printf("invalid DNS file format: parens never closed\n");

exit FAIL;

}

exit SUCCESS;

}

expand.awk
BEGIN
{ FS=""; thisDomain="etsu.edu."; previousDNSname=""; }

{
firstOfLine = substr($0,1,1);

restOfLine = substr($0,2,length($0)-1);

firstString = firstOfLine;

/* check if firstOfLine is a space or a tab */

if ((firstOfLine == " ") || (firstOfLine == "
"))

firstString = previousDNSname;

else

{

if (firstOfLine == "@")

{
firstString = thisDomain;

previousDNSname = thisDomain;

}

else

{
/* end of DNS name delimited by a space or a tab */

previousDNSname = substr($0,1,match($0,"[
]"));

}

}

printf("%s%s\n", firstString, restOfLine);

}

Using grep to extract Address Records from a Zone Dump
Various exercises in this tutorial focus specifically on those records in ETSU’s zone dump that associate DNS names with IP addresses. All such records can be extracted from etsu.edu.dns.txt using a command like

>grep $'\tA\t' etsu.edu.dns.txt > etsu.edu.dns.A.txt

This command, intuitively, directs grep to extract records from etsu.edu.dns.txt that contain

· a (field-separating) tab character (\tA\t), followed by
· the letter A (for “address record”) (\tA\t), followed by
a (field-separating) tab (\tA\t).

The key problem with the resulting dataset, from the standpoint of data processing, is that “A” records are irregular: they can consist of either

· three fields, including a DNS name, an address record indicator (A), and an IP address;

· four fields, including a DNS name, a timeout value, the “A” indicator, and an IP address;

· four-fields, including a DNS name, a network type indicator (typically IN), the “A” indicator, and an IP address; or

five fields, including a DNS name, a network type indicator, a timeout value, the “A” indicator, and an IP address.

To make address record data easier process, the logic for extracting these records from etsu.edu.dns.txt should normalize the records as they’re extracted. Here, the most straightforward procedure for extracting normalized records would be to insert null fields into three- and four-field records, at the appropriate places, either while or after the records are extracted.

And this need to update records as they’re being extracted suggests the use of yet another awk-based command:

awk –f a-records.awk < etsu.edu.dns.txt > etsu.edu.dns.A-records.txt

where a-records.awk is defined as follows:

BEGIN { FS="\t"; OFS="\t"; }

/^[^\t]+\tA\t[^\t]+$/

{
/* 3-field A record: network class, timeout absent */

print $1, "", "", $2, $3;

}

/^[^\t]+\t[0-9]+\tA\t[^\t]+$/

{
/* 4-field A record: network class not present */

print $1, "", $2, $3, $4;

}

/^[^\t]+\t[^0-9][^\t]*\tA\t[^\t]+$/

{
/* 4-field A record: timeout not present */

print $1, $2, "", $3, $4;

}

/^[^\t]+\t[^0-9][^\t]*\t[0-9]+\tA\t[^\t]+$/
{
/* 5-field A record */

print $0;

}

{
/* default: prevent non-A records from printing */

}

References for this appendix
[Albitz97]
Albitz, Paul and Liu, Cricket, DNS and Bind, 2nd Edition, c. 1997, O’Reilly Associates

[Microsoft03]
Microsoft Corporation, Resource Records Reference, http://www.microsoft.com/resources/ documentation/WindowsServ/2003/standard/proddocs/en-us/Default.asp?url=/resources/ documentation/WindowsServ/2003/standard/proddocs/en-us/sag_dns_add_rr-reference.asp, last accessed 23 June 2004

E. The awk programming language: command action syntax
The awk programming language is a pattern-based text processing language that repeatedly checks for matches between lines of input and a list of patterns. Whenever a line matches a pattern, a command associated with that pattern is invoked—a command that presumably analyzes the line’s content, and does some action based on that analysis.
The action part of the awk language, roughly speaking, is a simplified dialect of C that supports variables of type int and char * (string); vectors; assignment statements; if statements; loops; and built-in variables that control awk’s operation. What follows here is a brief list of awk’s key features, grouped by construct. For more information, consult a standard reference on UNIX utilities.

Basic syntactic constructs
· command-line management (ARGC, ARGV)

· variables (no declarations needed; language is self-typing).

· arithmetic, relational, and logical operators (+, -, *, /, %, ++, -- ; <, <=, ==. !=, >=, > ; ||, &&, !)

· assignment statements (=, +=, -=, *=, /=, %=)

· if statements, while loops, do-while loops, and for loops

· break and continue
Array manipulation
· 1-indexed, 1-dimensional arrays (array[1], array[2], etc.)

· associative arrays (array [“foo”], etc.)

· delete statement (i.e., delete array[2])

for var in array statement
File (stream) I/O support

· Standard input management

· getline – sets $0 to the next line from the standard input

· getline x – sets x to next line from standard input

cmd | getline –pipes the output from command cmd into getline.
· File I/O management

· Built-in variables that control manipulation of current file

· FILENAME – name of current file

· FNR – ordinal number of current record in current file

· getline <file – sets $0 to next record from file

· getline x <file – sets $x to next record from file

· close(file) – close file
Format control
· Format control variables

· Built-in variables that control parsing, unparsing of current line

· FS – input field separator (default: blank)

· RS – input record separator (default: newline)

· OFS – output field separator (default: blank)

· ORS – output record separator (default: newline)

· Formatted input

· Built-in variables that give fields of current line

· Built-in variable, $0, that, by default, gives current line from standard input;

· Built-in variables $1, $2, $3, etc. that give the current line’s fields, by position.

· Built-in variables that give attributes of current line

· NR – number of the current line

· NF – number of fields on current line
· Formatted output
· a C-like printf statement, which uses a format string to generate output; and

· a simpler print statement, which

· outputs its list of arguments, using

· two built-in awk variables to control output: OFS to separate arguments, and ORS to terminate output.

String access and manipulation functions
· The generalized string formatting function, the C-like sprintf(), which, here, returns a string

· String attribute access

· length(string) – gives length of string

· Substring manipulation, by index (note: all indexing is 1-index)

· index(string1, string2) – gives initial index of string2 in string1
· substr(string, index, substrCount) – extracts substrCount characters from string, starting at index

· String manipulation, by pattern

· match(string, regexp) – returns position in string where regexp first matches, or 0. The awk built-in vars RSTART and RLENGTH are set to the matched string’s start index and length, respectively.

· Two string-splitting functions:

· split(string, array) – splits string into array elements array[1], array[2], and so on, using the built-in awk variable FS as a field delimiter.

· split(string, array, separator) – splits string into array elements array[1], array[2], and so on, using the regular expression separator as a field delimiter.

· Four string substitution functions:

· gsub(regexp, substring) – substitutes substring for all instances of regexp in $0

· gsub(regexp, substring, string) – substitutes substring for all instances of regexp in string
· sub(regexp, substring) – substitutes substring for first instance of regexp in $0

· sub(regexp, substring, string) – substitutes substring for first instance of regexp in string
· Two case conversion functions:

· tolower(string) – convert all characters in string to lower case

· toupper(string) – convert all characters in string to upper case

Random-number generation functions
· rand – returns a random number between 0 and 1

· srand – set random-number seed for rand
Command execution
· system(cmd) – execute cmd as a system command, returning cmd’s status.

F. The vi editor: a guide for hardcore UNIX users

Why vi?

One of the most common UNIX text editors is a dinosaur known as vi (“vee-eye”). vi, which is short for “visual interface”, is a visual front-end for an even older editor, ex. ex is an example of an extinct species of editor known as a “line-oriented” editor. ex fails to provide a 2D display of the file being edited; fails to support the use of arrow keys or a mouse to navigate through a file; and fails to automatically manage the loading and unloading of text from disk when a file is too big to hold in memory. All text editing actions—including scrolling to the right chunk of the file, the right line in the right chunk, and the right cursor position in the right line—must be done a line at a time, using keyboard commands.

To make editing faster, the authors of ex kept the commands names short. Most ex commands are one or two letters long. A fluent ex user who types well can edit quickly. But ex—like other “alphabet soup” editors—requires practice and a memory for commands: e.g., for remembering whether k stands for “keep” or “kill”.

vi is far easier to use than ex. vi provides a 2D view of the user’s file buffer, supports arrow keys, and automates scrolling. vi, however, is still an “alphabet soup” editor. And it comes with four distinct set of commands, corresponding to four modes of operation:

· Visual command mode. vi, in visual command mode, accepts commands directly from the keyboard. Visual command mode, roughly speaking, supports two sets of commands: one set of one-letter commands that adjust the text in simple ways, and a second that switch to vi's other modes of operation.

· Insert mode. Insert mode inserts text into files. Users in insert mode simply start typing—and type until they tire of entering text, and hit escape. This mode supports two commands for undoing keystrokes: one that deletes to the beginning of the current line, and one that erases the last key entered.

· Line mode. vi's line mode allows a user to execute one ex-style command. These ex-style commands, which include global substitute and replace commands, are among the most useful vi commands

· Ex mode. One vi key sequence, Q, drops the user out of vi into ex. Knowing how to recognize ex mode and how to return to vi mode—is useful for recovering from inadvertent errors.

It’s much easier to teach a novice UNIX user nano than vi. Simple, however, is not always adequate. Editors like nano lack features that vi, for all its clumsiness, supports. One such feature is a “find and replace all” command. Another is macros. A third is support for pattern-driven search and replacement.

Starting vi
The following are four common commands for invoking vi.

vi stuff.txt
the standard UNIX command for editing file stuff.txt
vi +n stuff.txt
edits stuff.txt, starting at line n [n is a number]
vi -r stuff.txt
uses a vi "hidden" file, if present, to recover stuff.txt, after a crash

view stuff.txt
edit stuff.txt, in read-only mode
For a complete list of command line options, see vi’s man page.

Key vi visual mode commands

The following section contains a reasonably comprehensive list of vi visual mode commands. The list is divided into two parts: basic and advanced commands. Be careful—all alphabetic commands are case sensitive.

Basic visual mode commands

Status commands

 ^G

gives current line, number of lines in file, and the file modification status

Basic cursor positioning commands (one-keystroke commands)

 G

go to the last line in the file

 ^B

scroll backward one screen
 ^F

scroll forward one screen
 ^U

scroll backward (up) by a preset number of lines

 ^D

scroll forward (down) by a preset number of lines

 H, M, L

go to the first/middle/last line on current screen

 {

retreat to start of previous paragraph

 }

advance to start of next paragraph

 (

retreat to the beginning of the previous sentence.

)

advance to the beginning of the next sentence.

 [a sentence ends in a ., !, or ?, followed by either end of a line or two spaces.]

 -

retreat one line, to the first non-whitespace character

 +

advance one line, to the first non-whitespace character

 ^J and carriage return have the same effect as +

 0

retreat to the beginning of the current line

 |

same as 0

 $

advance to the end of the current line

 b

retreat one word, up to a non-alphanumeric character

 B

retreat one word, up to whitespace

 w

advance one word, up to a non-alphanumeric character
 W

advance one word, up to whitespace

 up-arrow, j

retreat one line, maintaining column position

 down-arrow, k
advance one line, maintaining column position

 left arrow, h
retreat one column, within current line

 right arrow, l
advance one column, within current line

the spacebar is the same as right arrow or l
The commands listed above accept an integer parameter. Putting a nonzero integer n before most of these commands asks those commands to repeat n times. Putting a number n before some commands, however, has other effects. Examples:

3 H

retreat three paragraphs

3 L

advance three paragraphs

3 G

go to line 3

3 ^U

advance three lines, and set the default scrolling unit to 3 lines at a time

3 ^D

retreat three lines, and set the default scrolling unit to 3 lines at a time

3 |

go to column 3
Screen positioning commands

^L

clear and redraw screen

^E

scroll window down (forward) one line

^Y

scroll window up (backward) one line
The following three commands are two-character command sequences:
z<CR>

redraw screen, putting current line at top

z.

redraw screen, putting current line in middle

z-

redraw screen, putting current line at bottom
Simple text search commands

/

search forwards. type search pattern immediately after "/", then a carriage return

?

search backwards. type search pattern immediately after "?", then a carriage return

n

repeat last search, in same direction

N

repeat last search, in opposite direction
The following six commands are two-character command sequences:

[[

search backwards to start of previous section (prev. { character)

]]

search forwards for start of next section (next { character)

f

search forwards for char, in current line; char after the f is char for which to search

t

search forwards for column before char (char after t) in current line

F

search backwards for char (char after F), in current line

T

search backwards for column after char (char after T), in current line

The following two commands are one-character command sequences:

 ;

repeat last f, t, F, or T

,

repeat last f, t, F, or T, but in opposite direction

%

find and jump to the matching {, }, (, or)
Simple text modification commands

x

delete the next character

X

delete the previous character

r

replace the next character with a single character

Y

save a copy of the current line in the unnamed "put" buffer

P

put the copy of the "put" buffer to screen, before the current cursor position

p

put the copy of the "put" buffer to screen, after the current cursor position

J

join the current line with the line that follows it

ZZ

write out current text buffer, if buffer has been changed since last write, and quit
The "d" (delete) command initiates a multi-character command sequence, where the trailing characters identify the extent of the deletion. The following are selected two-character "d" command sequences:

Dw

delete current word, in forward direction (up to non-alphanumeric text)

dW

delete current word, in forward direction (up to whitespace)

db

delete current word, in backward direction (up to non-alphanumeric text)

dB

delete current word, in backward direction (up to whitespace)

d0

delete from current cursor position to beginning of line

d)

delete the next sentence.

d$

delete from current cursor position to end of line (same as D)

dd

delete current line
These two-character command sequences may also be qualified with numbers, as in "3dd" or "d3d" [both commands delete three lines].

The following is a three-character "d" command sequence:

d]]

delete to end of section (that is, up to next curly bracket}
 The following command is similar in construction to the "d" command:

c

change the next object
 Other commands, which undo and redo actions:

u

undo last insert/delete

U

undo all changes to current line

.

repeat the last command that changed the buffer
Mode change commands

Commands that enter insert mode:

a

(append) enter insert mode at position after current position

A

(append) enter insert mode at position after last character on current line

i

enter insert mode at position before current position

I

enter insert mode at position before first non-whitespace character on current line

o

insert a line after current line, enter insert mode

O

insert a line before current line, enter insert mode

s

substitute for the next character, entering insert mode

S

substitute to the end of the current line, entering insert mode

R

replace the current character, entering insert mode (identical in function to s)
In each case, you exit from insert mode using the escape key.

Commands that allow the user to enter a single "ex" command:

:

enter "ex one-line command" mode
vi mode relies on the older ex mode to accomplish more complex tasks, like applying a substitution command to all lines in a file. For more on single-line ex commands, see the section on one-line ex commands, below. Exit from this mode by typing carriage return.

Commands that enter ex mode:

 Q

quit vi, enter "EX" mode
As a rule, people enter the older ex editor by accident, after entering a capital-Q. You can tell you’re in ex mode when you see a colon before every line, and the standard 2D display of the edit buffer vanishes.

Typically, the best thing to do after falling into ex mode is to return to vi mode. To return to vi mode from ex mode, use ex’s vi command (end this command with a carriage return).

Other useful visual mode commands

Marking commands

A mark is a user-set position in a file, denoted by a lower-case alphabetic character. The first three mark manipulating commands below are two-character commands. The other two are three-character commands.

m

mark current position in file. a lower-case alphabetic character must follow m

'

jump to user-set mark denoted by next character, a lower-case alphabetic char

‘ ’
jump to last editing context. the current editing context changes whenever cursor is moved in a non-relative way--e.g., by a G command or pattern search

d'x

delete from current line to the line containing mark x

d`x

delete from current cursor position to exact cursor position denoted by mark x
Text buffering

vi provides text buffers for temporarily saving, then restoring, text. "y", or yank, is the basic command for saving to text buffers. The following command sequences typify commands that save text in text buffers:

"xyw

yank next word into text buffer named x. here, x can be any lower-case letter

"ay3l

yank the next three characters into a text buffer named a.

"by3<CR>
yank the current line characters into a text buffer named b.
The delete command can also be used to delete text into buffers:

"a5dd

delete the next five lines into the buffer named a
The "p" and "P", or put after/put before commands, restore text from text buffers; e.g.,
"cP

restore the contents of buffer c before the current line

Text recovery following deletions

The delete command saves the last nine operations that delete one or more lines of text into text buffers named 1-9. Accordingly,

"1P

restores the text cut by the last multi-line deletion

"2P

restores the text cut by the second from last multi-line deletion

"3P

restores the text cut by the third from last multi-line deletion
Shell escapes -- the ! command

The !! command, followed by a standard UNIX command and a <CR>, inserts the output of that UNIX command in the buffer at the current position:

!!ls<CR>

stores the names of files in current directory in the buffer
Variants of the ! command invoke shell commands on sections of the buffer, causing the output to be written back into the buffer. Examples:

!}fmt

runs the UNIX text-formatting command on the next paragraph.

3!<CR>sort

runs the UNIX sort command on the current and next three lines
Key vi insert mode commands

In insert mode, you simply type what you want to place in the file, and end the typein by pressing the escape key (F11 in the standard Motif Windows Manager keymap).

There are a few special commands for insert mode:

backspace (^H)

erases last character, up to start of insert on current line
^W

erases last word entered

^U

erases to start of insert

^V

"quotes" next char. e.g., ^V<esc> embeds an escape char in a file
Basic "one line ex-mode" commands

The ":" command drops the user out of standard "vi" and into ex. The following is a short list of useful "ex" commands for vi users.

File manipulation commands

:w

write back changes

:w stuff.txt

write current buffer to stuff.txt (succeeds only if stuff.txt not present)

:w! stuff.txt

overwrite file stuff.txt

:q

quit (only succeeds if file has not been changed)

:q!

quit, discarding changes

:e stuff.txt

edit file stuff.txt

:e!

restart the edit session, discarding changes

:e! stuff.txt

edit file stuff.txt, discarding changes

:wq

write back changes, then quit
Text substitution

The two simplest forms of the text substitution command substitute text on the current line:

:s/pattern/replacement/
replace 1st occurrence of pattern on the current line

:s/pattern/replacement/g
replace all occurrence of pattern on the current line
 Any single character that’s not in the pattern may be used in place of forward slash as a delimiter, as in

:s|pattern|replacement|
The pattern part of a substitution is normally evaluated with respect to a rich set of pattern matching operators that correspond to the standard elements of regular expression languages:

^

matches beginning of a line, when used as first character in pattern
$

matches the end of a line

 .

matches any single character, except newline

[abc]

matches a or b or c

[a-z]

matches any ascii character between a and z, inclusive

[^abc]

matches any character, other than a or b or c

[^a-z]

matches any ascii character, other than a and z, inclusive

\(\)

paired parentheses: isolate subpatterns in the matching pattern (see below)

*

matches any number of occurrences of the previous regular expression.

\
"escapes" next char. Typically used with special chars $^.\[]()*.
To use $ in a pattern, e.g., write \$

The replacement part of a substitution is normally evaluated with respect to two special operators: &, which stands for the matched entire pattern, and \k, which stands for the kth matched subpattern. Some examples:

/^is$/

matches lines that consist of the word "is"

/^is/

matches an occurrence of "is" at head of a line

/^is[.]/

matches an occurrence of "is" at head of a line, plus the following character

/^is[.]*/

matches an occurrence of "is" at head of line, plus all text on remainder of line

/[ae]ffect/

matches "affect" or "effect"

s/\(it \)\(is \)/&&/
changes "it is " to "it is it is

s/\(it \)\(is \)/&\2\1?/
changes "it is " to "it is is it ?"
Text movement and copy

:m n

simplest text motion command; moves current line to line immediately following line n.

:co n

simplest form of copy command; copies current line to line immediately following line n
Range qualifiers

Some ex commands can be qualified with an initial parameter that specifies the range over which a command is to execute. The range specification is a pair of numeric expressions, where two special characters, ‘.’ and $, denote current and last lines in the file, respectively:

:1,10w stuff.txt

write lines 1-10 to stuff.txt

:10,50m60

move lines 1-50 to line 60

:1,.-1w stuff.txt

write all lines before current to stuff.txt

:1,.w stuff.txt

same, but include current line, also.

:.+1,$w stuff.txt

write all lines after current to stuff.txt
A range qualifier may also be a pattern, as in

:/crafty/s/crafty/wise/

find next line with the word "crafty", and substitute "wise" for "crafty"

:g/crafty/s/crafty/wise/
adding “g” prefix extends command to all lines containing “crafty”.
Setting options

set customizes vi's operation. Some favorite options follow:

:set ai

enable automatic indentation. Gives block-structured appearance, automatically.

^D

when autoindent is active, ^D exdents when entered at start of new line, in insert mode.

:set aw

causes current file to be updated automatically (autowritten) on ^Z, or file switch

:set magic
causes patterns to be evaluated using standard rules for regular expression [default].

:set mesg
turns on write permissions to terminal while using vi

:set number
numbers lines in buffer
For all set options “xyz”, ":set noxyz" undoes the effect of ":set xyz".

Abbreviations (insert-mode macros)

:ab text longer-text
creates an insert-mode abbreviation, “text”, for “longer-text”.

:unabbrev text

eliminates the abbreviation “text”

Macros

Map allows users to create simple, parameterless macros. For example,

:map ^A iterm ^V<ESC><CR>
pairs ^A with a macro that inserts the word "term".
:unmap ^A

undoes the mapping of ^A
“Ex” mode commands

"ex" mode commands are beyond the scope of this document.

You know you're in "ex" mode when the appearance of using a visual interface disappears, and is replaced by the appearance of a line-at-a-time interface that shows you the ":" prompt character.

To return to "vi" mode from "ex", issue the "vi" command, followed by a <CR>. To exit "ex" and return to the main UNIX command prompt, give the "x" command, followed by a <CR>

� Important exceptions include third-party utilities like nano and XWindows, and implementations of internetworking protocols, like nslookup and putty.

� The most important redesign initiative, to date, has been the IEEE-sponsored POSIX standard, a reaction to the 1980’s explosion of ---X operating systems that attempted to define a standard look and feel for UNIX-like commands and APIs. One of the most important widely used packages of UNIX-like support software, the Free Software Foundation’s GNU utilities, has been developed with POSIX-compliance in mind.

� Gutmann, Peter, "Secure Deletion of Data from Magnetic and Solid-State Memory”, Proceedings, 6th Annual Usenix Security Symposium

� Two of this command’s three idioms—the bash input redirection (<) operator, which pulls content from a first file, and the bash output redirection (>) operator, which pushes content to a second—are discussed in Section 6.4. The third, /dev/null, is a special UNIX device that, when read, produces no input, and that, when updated, discards all output.

� bash’s “append output to file” redirection operator,, >>, is discussed in Section 6.4.

� The backslash keeps a period from being interpreted as the “match any” metacharacter.

� The grouping operators aren’t needed because the pattern being matched is one character long.

PAGE
3

