CSCI 1900
Discrete Structures

Labeled Trees
Reading: Kolman, Section 7.2

Giving Meaning to Vertices and Edges

- Our discussion of trees implied that a vertex is simply an entity with parents and offspring much like a family tree.
- What if the position of a vertex relative to its siblings or the vertex itself represented an operation. Examples:
 - Edges from a vertex represent cases from a switch statement in software
 - Vertex represented a mathematical operation

Mathematical Order of Precedence Represented with Trees

- Consider the equation:

 \[(3 - (2 \times x)) + ((x - 2) - (3 + x))\]

- Each element is combined with another using an operator, i.e., this expression can be broken down into a hierarchy of \((a \circ b)\) where \(\circ\) represents an operation used to combine two elements.
- We can use a binary tree to represent this equation with the elements as the leaves.

Positional Tree

- A positional tree is an n-tree that relates the direction/angle an edge comes out of a vertex to a characteristic of that vertex. For example:

 - When n=2, then we have a positional binary tree.

Tree to Convert Base-2 to Base-10

Starting with the first digit, take the left or right edge to follow the path to the base-10 value.
For-Loop Represented with Tree

```plaintext
for i = 1 to 3
    for j = 1 to 5
        array[i,j] = 10*i + j
next j
next i
```

For Loop Positional Tree

```
  i = 1
  i = 2
  i = 3
```

Storing Binary Trees in Memory

- Section 4.6 introduced us to “linked lists”. Each item in the list was comprised of two components:
 - Data
 - Pointer to next item in list
- Positional binary trees require two links, one following the right edge and one following the left edge. This is referred to as a “doubly linked list.”

Doubly Linked List

<table>
<thead>
<tr>
<th>Index</th>
<th>Left</th>
<th>Data</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Precedence Example Derived from the Doubly Linked List

```
  3 (4)  
  + (2)  
  - (3)  
  x (5)  
  x (7)  
  x (10) 
  x (11) 
  2 (6)  
  2 (6)  
  3 (13) 
  x (14) 
```

The numbers in parenthesis represent the index from which they were derived in the linked list on the previous slide.

Huffman Code

- Depending on the frequency of the letters occurring in a string, the Huffman Code assigns patterns of varying lengths of 1’s and 0’s to different letters.
- These patterns are based on the paths taken in a binary tree.
- A Huffman Code Generator can be found at: http://www.inf.puc-rio.br/~sardinha/Huffman/Huffman.html